Facile Template In-Situ Fabrication of ZnCo2O4 Nanoparticles with Highly Photocatalytic Activities under Visible-Light Irradiation

*Vu T. Tan  -  School of Chemical Engineering, Hanoi University of Science and Technology, Viet Nam
La The Vinh  -  School of Chemical Engineering, Hanoi University of Science and Technology, Viet Nam
Tran Ngoc Khiem  -  International Training Institute for Materials Science (ITIMS), Hanoi University of Science and, Viet Nam
Huynh Dang Chinh  -  School of Chemical Engineering, Hanoi University of Science and Technology, Viet Nam
Received: 15 Nov 2018; Revised: 15 Feb 2019; Accepted: 15 Feb 2019; Published: 1 Aug 2019; Available online: 30 Apr 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image

High specific surface area ZnCo2O4 nanoparticles were prepared via a sacrificial template accelerated hydrolysis by using nanoparticles of ZnO with highly polar properties as a template. The obtained ZnCo2O4 nanoparticles were characterized by the method of scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area measurements, Transmission electron microscopy (TEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The obtained nanoparticles were performed as a photocatalyst for the degradation of methylene blue in aqueous solution under visible irradiation. The photocatalytic degradation rate of methylene blue onto the synthesized ZnCo2O4 was higher than that of commercial ZnO and synthesized ZnO template. Copyright © 2019 BCREC Group. All rights reserved.


Keywords: Sacrificial template; ZnCo2O4; photodegradation; methylene blue; ZnO

Article Metrics:

  1. Ibhadon A., Fitzpatrick, P. (2013). Heterogeneous Photocatalysis: Recent Advances and Applications, Catalysts, 3: 189-218.
  2. Kabra, K., Chaudhary, R., Sawhney, R.L. (2004). Treatment of Hazardous Organic and Inorganic Compounds through Aqueous-Phase
  3. Photocatalysis: A Review, Ind. Eng. Chem. Res., 43: 7683-7696.
  4. Geckeler, K.E., Volchek, K.(1996). Removal of Hazardous Substances from Water Using Ultrafiltration in Conjunction with Soluble Polymers, Environ. Sci. Technol., 30: 725-734.
  5. Shitu, A. (2014). Removal of Methylene Blue Using Low Cost Adsorbent: A Review, Research journal of chemical Sciences, 4: 2231-606.
  6. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D.W. (2014). Understanding TiO2 Photocatalysis: Mechanisms and Materials», Chem. Rev., 114: 9919-9986.
  7. Lazar, M.A., Varghese , S., Nair, S.S. (2012). Photocatalytic water treatment by titanium dioxide: recent updates, Catalyst, 2: 572-601.
  8. Hamid, S.B., Teh, A.S.J., Lai, C.W. (2017). Photocatalytic Water Oxidation on ZnO: A Review, Catalysts, 7: 93-99.
  9. Ong, C.B., Ng, L.Y., Mohammad, A.W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications, Renewable and Sustainable Energy Reviews, 81: 536-551.
  10. Kansal, S.K., Ali, A.H., Kapoor, S. (2010). Photocatalytic decolorization of biebrich scarlet dye in aqueous phase using different nanophotocatalysts, Desalination, 259: 147-155.
  11. Podporska-Carroll, J., Mylesa, A., Quilty, B., Mc Cormack, D.E., Fagan, R., Hinder, S.J., Dionysiou, D.D., Pillai, F.C. (2017). Antibacterial properties of F-doped ZnO visible light photocatalyst, Journal of Hazardous Materials, 324: 39-47.
  12. Banerjee, S., Pillai, S.C., Falaras, P., O’Shea, K.E., Byrne, J.A., Dionysiou, D.D. (2014). New Insights into the Mechanism of Visible Light Photocatalysis, J. Phys. Chem. Lett. 5: 2543-2554.
  13. Vu, T.T., Valdés-Solis, T., Marbán, G. (2013). Fabrication of wire mesh–supported ZnO photocatalysts protected against photocorrosion. Applied Catalysis B: Environmental. 140–141: 189-198.
  14. Xiao, F.X. (2012). Construction of Highly Ordered ZnO-TiO2 Nanotube Arrays (ZnO/TNTs) Heterostructure for Photocatalytic Application, ACS Appl. Mater. Interfaces, 4: 7055-7063.
  15. Aliaga, J., Cifuentes, N., Gonzalez, G., Sotomayor-Torres, C., Benavente, E. (2018). Enhancement Photocatalytic Activity of the Heterojunction of Two-Dimensional Hybrid Semiconductors ZnO/V2O5, Catalyst, 8(9): 374.
  16. Kandjani, A.E., Sabri, Y.M., Periasamy, S.R., Zohora, N., Amin, M.H., Nafady, A., Bhargava, S.K. (2015), Controlling core/shell formation of Nanocubic p-Cu2O/n-ZnO toward enhanced photocatalytic performance, Langmuir, 31: 10922-10930.
  17. Feng, Y., Wang, G., Liao, J., Li, W., Chen, C., Li, M., Li, Z. (2017). Honeycomb-like ZnO Mesoporous Nanowall Arrays Modified with Ag Nanoparticles for Highly Efficient Photocatalytic Activity, Scientific Reports, 7: 11622.
  18. Zhang, H., Zong, R., Zhu, Y. (2018). Photocorrosion Inhibition and Photoactivity Enhancement for Zinc Oxide via Hybridization with Monolayer Polyaniline, J. Phys. Chem. C., 113: 4605–4611.
  19. Fageria, P., Gangopadhyay, S., Pande, S. (2014). Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light, RSC Adv., 4: 24962-24972.
  20. Zhang, Y., Xu, J., Xu, P., Zhu, Y., Chen, X., Yu, W. (2010). Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance, Nanotechnology, 21: 285501.
  21. Cousin, P., Ross, R.A. (1990). Preparation of Mixed Oxides-A Review, Materials Science and Engineering: A, 130:119-125.
  22. Zhang, H., Zong, R., Zhu, Y. (2017). Defective ZnCo2O4 with Zn vacancies: Synthesis, property and electrochemical application, Journal of Alloys and Compounds, 724:1149–1156.
  23. Cui, B., Lin, H., Zhao, X., Li, J.B., Li, W.-D. (2011). Visible Light Induced Photocatalytic Activity of ZnCo2O4 Nanoparticles», Acta Physico-Chimica Sinica, 27: 112-120.
  24. Vu, T.T., Marbán, G. (2014). Sacrificial template synthesis of high surface area metal oxides. Example: An excellent structured Fenton-like catalyst, Applied Catalysis B: Environmental, 152–153: 51-58.
  25. Liu, J., Jiang, J., Bosman, M., Fan, H.J. (2012). Three-dimensional tubular arrays of MnO2-NiO nanoflakes with high areal pseudocapacitance, J. Mater. Chem., 22: 2419-2426.
  26. Liu, J., Li, Y., Fan, H., Zhu, Z., Jiang, J., Ding, R., Hu,Y., Huang, X. (2012). Iron Oxide-Based Nanotube Arrays Derived from Sacrificial Template-Accelerated Hydrolysis: Large-Area Design and Reversible Lithium Storage, Chem. Mater, 22: 212–217.
  27. Zeng, W., Zheng, F., Li, R., Zhan, Y., Li, Y., Liu, J. (2012). Template synthesis of SnO2/α-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity, Nanoscale, 4: 2760-2765.
  28. Liu, J., Jiang, J., Bosman, M., Fan, H.J. (2012). Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance, J. Mater. Chem., 22(6): 2419-2426.
  29. Vu, T.T., Rodil, A.B., Marbán, G., Valdés-Solís, T. (2014). Nanostructured stainless steel wire mesh-supported CdxZn1- xO: A stable photocatalyst under visible and ultraviolet irradiation, Journal of Environmental Chemical Engineering, 2: 1612-1620.
  30. Vu, T.T., Valdés-Solís, T., Marbán, G. (2014). Novel high surface area stainless steel wire mesh supported Ni0.7Zn0.3O solid solution prepared by room temperature sacrificial template accelerated hydrolysis. Application in the production of hydrogen from methanol. Applied Catalysis B: Environmental, 160–161: 57–66.
  31. Wei, W., Chen, W., Ivey, D. (2008). Rock Salt−Spinel Structural Transformation in Anodically Electrodeposited Mn−Co−O Nanocrystals, Chem. Mater., 20: 1941-1947.
  32. Klevak, E., Kas, J.J., Rehr, J.J. (2014). Charge transfer satellites in x-ray spectra of transition metal oxides, Physical Review B, 89(8): 085123.
  33. Hu, L., Qu, B., Li, C., Chen, Y., Mei, L., Lei, D., Chen, L., Li, Q., Wang, T. (2013). Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries, J. Mater. Chem. A, 18: 5596-5602.

No citation recorded.