CO2 Reforming of Methane over LaNiO3 Perovskite Supported Catalysts: Influence of Silica Support

*Djamila Sellam  -  Laboratoire de Chimie Applique et de Genie Chimie, Université Mouloud Mammeri (UMMTO), Algeria
Kahina Ikkour  -  Laboratoire de Chimie Applique et de Genie Chimie, Université Mouloud Mammeri (UMMTO), Algeria
Sadia Dekkar  -  Laboratoire de Chimie Applique et de Genie Chimie, Université Mouloud Mammeri (UMMTO), Algeria
Hassiba Messaoudi  -  Laboratoire des Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de Chimie, Université Science and Technology Houari Boumediene, Algeria
Taous Belaid  -  Université A. Mira Bejaia, Algeria
Anne- Cécile Roger  -  Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé, CNRS, Université de Strasbourg, France
Received: 24 Oct 2018; Revised: 21 May 2019; Accepted: 24 May 2019; Published: 1 Dec 2019; Available online: 30 Sep 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

The study presents the dry reforming of methane using natural Kaolin silica as catalyst support. The silica-supported LaNiO3 perovskite catalysts (20LaNiO3/SiO2 and 40LaNiO3/SiO2) and bulk LaNiO3 catalyst were synthesized by auto-combustion method. The resulting catalysts were characterized by X-ray diffraction (XRD), N2 adsorption - desorption isotherm measurement,  scanning electron microscopy (SEM) and temperature-programmed reduction (TPR). After reduction at 700 °C, they were used as catalysts for the reaction of dry reforming of methane into synthesis gas at atmospheric pressure at 800 °C. The reduced 40LaNiO3/SiO2 exhibited high catalytic activity. This result was attributed to the small Ni metallic particles obtained from the reduced perovskite highly dispersed on the support and the good reducibility. The increase of reduction temperature at 800 °C resulted in a further enhancement of the catalytic performance of 40LaNiO3/SiO2 catalyst. Copyright © 2019 BCREC Group. All rights reserved


Keywords: Methane; Syn gas; LaNiO3 supported catalyst; kaolin silica

Article Metrics:

  1. Stagg-Williams, S.M., Noronha, F.B., Fendley, G., Resasco, D.E. (2000). CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides. J. Catal., 194: 240–249.
  2. Valderrama, G., Kiennemann, A., Goldwasser, M.R. (2008). Dry reforming of CH4 over solid solutions of LaNi1− xCoxO3. Catal. Today, 133: 142-148.
  3. Tsang, S.C., Claridge, J.B., Green, M.L.H. (1995). Recent advances in the conversion of methane to synthesis gas. Catal. Today, 23: 3–15.
  4. Hou, Z., Chen, P., Fang, H., Zheng, X., Yashima, T. (2006). Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts. Int. J. Hydrogen Energy, 31: 555-561.
  5. Basile, F., Fornasari, G., Trifiro, F., Vaccari, A. (2002). Rh–Ni synergy in the catalytic partial oxidation of methane: surface phenomena and catalyst stability. Catal. Today, 77: 215-223.
  6. Verykios, X.E. (2003). Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. Int. J. Hydrogen Energy, 28: 1045-1063.
  7. Ashok, J., Kawi, S. (2013). Steam reforming of toluene as a biomass tar model compound over CeO2 promoted Ni/CaO–Al2O3 catalytic systems. Int. J. Hydrog. Energy, 38: 13938–13949.
  8. Sagar, T.V., Padmakar, D., Lingaiah, N., Rao, K.S.R., Reddy, I.A.K., Prasad,
  9. P.S.Sai. (2017). Syngas production by CO2 reforming of methane on LaNixAl1−xO3 perovskite catalysts: influence of method of preparation. J. Chem. Sci., 129: 1787–1794.
  10. Ikkour, K., Sellam, D., Kiennemann, A., Tezkratt, S., Cherifi, O. (2009). Activity of Ni Substituted Ca-La-hexaaluminate Catalyst in Dry Reforming of Methane. Catal. Lett, 132: 213–217.
  11. Gil-Calvo, M., Jiménez-González, C., de Rivas, B., Ortiz, J.I.G., Lopez-Fonseca, R. (2017). Hydrogen Production by Reforming of Methane over NiAl2O4/CexZr1-xO2 Catalysts. Chem. Eng. Trans., 57: 901-906.
  12. Manh Ha, Q.L., Armbruster, U., Atia, H., Schneider, M., Lund, H., Agostini, G., Radnik, J., Vuong, H.T., Martin, A. (2017). Development of Active and Stable Low Nickel Content Catalysts for Dry Reforming of Methane. Catalysts, 7: 157-174.
  13. Choudhary, V.R., Rane, V.H., Rajput, A.M. (1993). Selective oxidation of methane to CO and H2 over unreduced NiO-rare earth oxide catalysts. Catal. Lett, 22: 289-297.
  14. Nair, M.M., Kaliaguine, S., Kleitz, F. (2014). Nanocast LaNiO3 Perovskites as Precursors for the Preparation of Coke-Resistant Dry Reforming Catalysts. ACS Catal, 4: 3837−3846.
  15. Batiot-Dupeyrat, C., Valderrama, G., Meneses, A., Martinez, F., Barrault, J., Tatibouet, J.M. (2003). Pulse study of CO2 reforming of methane over LaNiO3. Applied. Catal. A: General, 248: 143–151.
  16. Dama, S., Ghodke, S.R.., Bobade, R., Gurav, H.R., Chilukuri, S. (2018). Active and durable alkaline earth metal substituted perovskite catalysts for dry reforming of methane. Applied Catal B: Env, 224: 146-158.
  17. Khalesi, A., Arandiyan, H.R., Parvari, M. (2008). Effects of Lanthanum Substitution by Strontium and Calcium in La-Ni-Al Perovskite Oxides in Dry Reforming of Methane. Chin. J. Catal, 29: 960-968.
  18. Rivas, M.E., Fierro, J.L.G., Goldwasser, M.R., Pietri, E., Pérez-Zurita, M.J., Griboval- Constant, A., Leclercq, G. (2008). Structural features and performance of LaNi1− xRhxO3 system for the dry reforming of methane. Applied Catal A: Gen, 344: 10-19.
  19. Moradi, G.R., Rahmanzadeh, M., Khosravian, F. (2014). The effects of partial substitution of Ni by Zn in LaNiO3 perovskite catalyst for methane dry reforming. Journal of CO2 Utilization, 6: 7-11
  20. Su, Y.J., Pan, K.L., Chang, M.B. (2014). Modifying perovskite-type oxide catalyst LaNiO3 with Ce for carbon dioxide reforming of methane. Int. J. Hydrogen Energy, 39: 4917-4925.
  21. Gallego, G.S., Marín, J.G., Batiot Dupeyrat, C., Barrault, J., Mondragón, F. (2009). Influence of Pr and Ce in dry methane reforming catalysts produced from La1− xAxNiO3− δ perovskites. Applied. Catal A: Gen, 369: 97-103.
  22. Rivas, I., Alvarez, J., Pietri, E., Perez-Zurita, M.J., Goldwasser, M.R. (2010). Perovskite-type oxides in methane dry reforming: Effect of their incorporation into a mesoporous SBA-15 silica-host. Catal. Today, 149: 388–393.
  23. Rabelo-Neto, R.C., Sales, H.B.E., Inocêncio, C.V.M., Varga, E., Oszko, A., Erdohelyi, A., Noronha, F.B., Mattos, L.V. (2018). CO2 reforming of methane over supported LaNiO3perovskite-type oxides. Applied Catal B: Env, 221: 349–361.
  24. Wang, N., Yu, X., Wang, Y., Chu, W., Liu, M. (2013). A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catal. Today, 212: 98–107.
  25. Dacquin, J.P., Sellam, D., Batiot-Dupeyrat, C., Tougerti, A., Duprez, D., Royer, S. (2014). Efficient and Robust Reforming Catalyst in Severe Reaction Conditions by Nanoprecursor Reduction in Confined Space. ChemSusChem, 7: 631-637.
  26. Moradi, G., Hemmati, H., Rahmanzadeh, M. (2013). Preparation of a LaNiO3/g‐Al2O3 Catalyst and its Performance in Dry Reforming of Methane. Chem. Eng. Technol, 36: 575–580.
  27. Akri, M., Pronier, S., Chafik, T., Achak, O., Granger, P., Simon, P., Trentesaux, M., Batiot- Dupeyrat, C. (2017). Development of nickel supported La and Ce-natural illite clay for autothermal dry reforming of methane: Toward a better resistance to deactivation. Applied Catal B: Env, 205, 519–531.
  28. Liu, H., Yao, L., Bel Hadj Taief, H., Benzina, M., Da Costa, P., Gálvez, M.E. (2018). Natural clay-based Ni-catalysts for dry reforming of methane at moderate temperatures. Catal. Today, 306: 51-57.
  29. Brahmi, D., Merabet, D., Belkacemi, H., Mostefaoui, T.A., Ait Ouakli, N. (2014). Preparation of amorphous silica gel from Algerian siliceous by-product of kaolin and its physico chemical properties. Ceramics International, 40: 10499-10503.
  30. Sellam, D., Bonne, M., Arrii-Clacens, S., Lafaye, G., Bion, N., Tezkratt, S., Royer, S., Marécot, P., Duprez, D. (2010). Simple approach to prepare mesoporous silica supported mixed-oxide nanoparticles by in situ autocombustion procedure. Catal. Today, 157: 131-136.
  31. Yang, E., Noha, Y., Ramesh, S., Lim, S., Moon, D. (2015). The effect of promoters in La0.9M0.1Ni0.5Fe0.5O3 (M = Sr, Ca) perovskite catalysts on dry reforming of methane. Fuel Process Technol, 134: 404-413.
  32. Akri, M., Chafik, T., Granger, P., Ayrault, P., Batiot-Dupeyrat, C. (2016). Novel nickel promoted illite clay based catalyst for autothermal dry reforming of methane. Fuel, 178: 139–147.
  33. Liu, B.S., Au, C.T. (2003). Carbon deposition and catalyst stability over La2NiO4/g-Al2O3 during CO2 reforming of methane to syngas. Appl. Catal. A. Gen., 244: 181-195.
  34. Rodulfo-Baechler, S.M.A., Pernia, W., Aray, I., Figueroa, H., Gonzalez-Cortes, S.L. (2006). Influence of lanthanum carbonate phases of Ni/La0.98Sr0.02O x catalyst over the oxidative transformation of methane. Catal. Lett, 112: 231–237.
  35. Naeem, M.A., Al-Fatesh, A.S., Abasaeed, A.E., Fakeeha, A.H. (2014). Activities of Ni-based nano catalysts for CO2–CH4 reforming prepared by polyol process. Fuel Process Technol, 122: 141–152.
  36. Tao, K., Shi, L., Ma, Q., Wang, D., Zeng, C., Kong, C., Wu, M., Chen, L., Zhou, S., Hu, Y., Tsubaki, N. (2013). Methane reforming with carbon dioxide over mesoporous nickel–alumina composite catalyst. Chem. Eng. J, 221: 25–31.
  37. Liu, H., Bel Hadjltaief, H., Benzina, M., Gàlvez, M.E., Da Costa, P. (2019). Natural clay based nickel catalysts for dry reforming of methane: On the effect of support promotion (La, Al, Mn). Int. J. Hydrogen Energy, 44(1): 246-255.
  38. Barros, B.S., Kulesza, J., de Araújo Melo, D.M., Kienneman, A. (2015). Nickel-based catalyst precursor prepared via microwave-induced combustion method: Thermodynamics of synthesis and performance in dry reforming of CH4. Mat. Res,18: 732-739.
  39. Amin, M.H., Putla, S., Bee Abd Hamid, S., Bhargava, S.K. (2015). Understanding the role of lanthanide promoters on the structure–activity of nanosized Ni/-Al2O3 catalysts in carbon dioxide reforming of methane. Applied Catal. A: Gen, 492: 160–168.
  40. Istadi, I., Anggoro, D.D., Amin, N.A.S., Ling, D.H.W. (2011). Catalyst deactivation simulation through carbon deposition in carbon dioxide reforming over Ni/CaO-Al2O3 catalyst. Bull. Chem. React. Eng. Catal. 6(2): 129-136
  41. Gallego, G.S., Batiot-Dupeyrat, C., Barrault, J., Mondragon, F. (2008). Dual Active-Site Mechanism for Dry Methane Reforming over Ni/La2O3 Produced from LaNiO3 Perovskite. Ind. Eng. Chem. Res, 47: 9272–9278.

No citation recorded.