skip to main content

CO2 Reforming of Methane over LaNiO3 Perovskite Supported Catalysts: Influence of Silica Support

1Laboratoire de Chimie Applique et de Genie Chimie, Université Mouloud Mammeri (UMMTO), Algeria

2, Tizi-ouzou, Algeria

3Laboratoire des Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de Chimie, Université Science and Technology Houari Boumediene, Algeria

4 Université A. Mira Bejaia, Algeria

5 Institut de Chimie et Procédés pour l’Énergie, l’Environnement et la Santé, CNRS, Université de Strasbourg, France

View all affiliations
Received: 24 Oct 2018; Revised: 21 May 2019; Accepted: 24 May 2019; Published: 1 Dec 2019; Available online: 30 Sep 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The study presents the dry reforming of methane using natural Kaolin silica as catalyst support. The silica-supported LaNiO3 perovskite catalysts (20LaNiO3/SiO2 and 40LaNiO3/SiO2) and bulk LaNiO3 catalyst were synthesized by auto-combustion method. The resulting catalysts were characterized by X-ray diffraction (XRD), N2 adsorption - desorption isotherm measurement,  scanning electron microscopy (SEM) and temperature-programmed reduction (TPR). After reduction at 700 °C, they were used as catalysts for the reaction of dry reforming of methane into synthesis gas at atmospheric pressure at 800 °C. The reduced 40LaNiO3/SiO2 exhibited high catalytic activity. This result was attributed to the small Ni metallic particles obtained from the reduced perovskite highly dispersed on the support and the good reducibility. The increase of reduction temperature at 800 °C resulted in a further enhancement of the catalytic performance of 40LaNiO3/SiO2 catalyst. Copyright © 2019 BCREC Group. All rights reserved

 

Fulltext View|Download
Keywords: Methane; Syn gas; LaNiO3 supported catalyst; kaolin silica

Article Metrics:

  1. Stagg-Williams, S.M., Noronha, F.B., Fendley, G., Resasco, D.E. (2000). CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides. J. Catal., 194: 240–249
  2. Valderrama, G., Kiennemann, A., Goldwasser, M.R. (2008). Dry reforming of CH4 over solid solutions of LaNi1− xCoxO3. Catal. Today, 133: 142-148
  3. Tsang, S.C., Claridge, J.B., Green, M.L.H. (1995). Recent advances in the conversion of methane to synthesis gas. Catal. Today, 23: 3–15
  4. Hou, Z., Chen, P., Fang, H., Zheng, X., Yashima, T. (2006). Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts. Int. J. Hydrogen Energy, 31: 555-561
  5. Basile, F., Fornasari, G., Trifiro, F., Vaccari, A. (2002). Rh–Ni synergy in the catalytic partial oxidation of methane: surface phenomena and catalyst stability. Catal. Today, 77: 215-223
  6. Verykios, X.E. (2003). Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. Int. J. Hydrogen Energy, 28: 1045-1063
  7. Ashok, J., Kawi, S. (2013). Steam reforming of toluene as a biomass tar model compound over CeO2 promoted Ni/CaO–Al2O3 catalytic systems. Int. J. Hydrog. Energy, 38: 13938–13949
  8. Sagar, T.V., Padmakar, D., Lingaiah, N., Rao, K.S.R., Reddy, I.A.K., Prasad,
  9. P.S.Sai. (2017). Syngas production by CO2 reforming of methane on LaNixAl1−xO3 perovskite catalysts: influence of method of preparation. J. Chem. Sci., 129: 1787–1794
  10. Ikkour, K., Sellam, D., Kiennemann, A., Tezkratt, S., Cherifi, O. (2009). Activity of Ni Substituted Ca-La-hexaaluminate Catalyst in Dry Reforming of Methane. Catal. Lett, 132: 213–217
  11. Gil-Calvo, M., Jiménez-González, C., de Rivas, B., Ortiz, J.I.G., Lopez-Fonseca, R. (2017). Hydrogen Production by Reforming of Methane over NiAl2O4/CexZr1-xO2 Catalysts. Chem. Eng. Trans., 57: 901-906
  12. Manh Ha, Q.L., Armbruster, U., Atia, H., Schneider, M., Lund, H., Agostini, G., Radnik, J., Vuong, H.T., Martin, A. (2017). Development of Active and Stable Low Nickel Content Catalysts for Dry Reforming of Methane. Catalysts, 7: 157-174
  13. Choudhary, V.R., Rane, V.H., Rajput, A.M. (1993). Selective oxidation of methane to CO and H2 over unreduced NiO-rare earth oxide catalysts. Catal. Lett, 22: 289-297
  14. Nair, M.M., Kaliaguine, S., Kleitz, F. (2014). Nanocast LaNiO3 Perovskites as Precursors for the Preparation of Coke-Resistant Dry Reforming Catalysts. ACS Catal, 4: 3837−3846
  15. Batiot-Dupeyrat, C., Valderrama, G., Meneses, A., Martinez, F., Barrault, J., Tatibouet, J.M. (2003). Pulse study of CO2 reforming of methane over LaNiO3. Applied. Catal. A: General, 248: 143–151
  16. Dama, S., Ghodke, S.R.., Bobade, R., Gurav, H.R., Chilukuri, S. (2018). Active and durable alkaline earth metal substituted perovskite catalysts for dry reforming of methane. Applied Catal B: Env, 224: 146-158
  17. Khalesi, A., Arandiyan, H.R., Parvari, M. (2008). Effects of Lanthanum Substitution by Strontium and Calcium in La-Ni-Al Perovskite Oxides in Dry Reforming of Methane. Chin. J. Catal, 29: 960-968
  18. Rivas, M.E., Fierro, J.L.G., Goldwasser, M.R., Pietri, E., Pérez-Zurita, M.J., Griboval- Constant, A., Leclercq, G. (2008). Structural features and performance of LaNi1− xRhxO3 system for the dry reforming of methane. Applied Catal A: Gen, 344: 10-19
  19. Moradi, G.R., Rahmanzadeh, M., Khosravian, F. (2014). The effects of partial substitution of Ni by Zn in LaNiO3 perovskite catalyst for methane dry reforming. Journal of CO2 Utilization, 6: 7-11
  20. Su, Y.J., Pan, K.L., Chang, M.B. (2014). Modifying perovskite-type oxide catalyst LaNiO3 with Ce for carbon dioxide reforming of methane. Int. J. Hydrogen Energy, 39: 4917-4925
  21. Gallego, G.S., Marín, J.G., Batiot Dupeyrat, C., Barrault, J., Mondragón, F. (2009). Influence of Pr and Ce in dry methane reforming catalysts produced from La1− xAxNiO3− δ perovskites. Applied. Catal A: Gen, 369: 97-103
  22. Rivas, I., Alvarez, J., Pietri, E., Perez-Zurita, M.J., Goldwasser, M.R. (2010). Perovskite-type oxides in methane dry reforming: Effect of their incorporation into a mesoporous SBA-15 silica-host. Catal. Today, 149: 388–393
  23. Rabelo-Neto, R.C., Sales, H.B.E., Inocêncio, C.V.M., Varga, E., Oszko, A., Erdohelyi, A., Noronha, F.B., Mattos, L.V. (2018). CO2 reforming of methane over supported LaNiO3perovskite-type oxides. Applied Catal B: Env, 221: 349–361
  24. Wang, N., Yu, X., Wang, Y., Chu, W., Liu, M. (2013). A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catal. Today, 212: 98–107
  25. Dacquin, J.P., Sellam, D., Batiot-Dupeyrat, C., Tougerti, A., Duprez, D., Royer, S. (2014). Efficient and Robust Reforming Catalyst in Severe Reaction Conditions by Nanoprecursor Reduction in Confined Space. ChemSusChem, 7: 631-637
  26. Moradi, G., Hemmati, H., Rahmanzadeh, M. (2013). Preparation of a LaNiO3/g‐Al2O3 Catalyst and its Performance in Dry Reforming of Methane. Chem. Eng. Technol, 36: 575–580
  27. Akri, M., Pronier, S., Chafik, T., Achak, O., Granger, P., Simon, P., Trentesaux, M., Batiot- Dupeyrat, C. (2017). Development of nickel supported La and Ce-natural illite clay for autothermal dry reforming of methane: Toward a better resistance to deactivation. Applied Catal B: Env, 205, 519–531
  28. Liu, H., Yao, L., Bel Hadj Taief, H., Benzina, M., Da Costa, P., Gálvez, M.E. (2018). Natural clay-based Ni-catalysts for dry reforming of methane at moderate temperatures. Catal. Today, 306: 51-57
  29. Brahmi, D., Merabet, D., Belkacemi, H., Mostefaoui, T.A., Ait Ouakli, N. (2014). Preparation of amorphous silica gel from Algerian siliceous by-product of kaolin and its physico chemical properties. Ceramics International, 40: 10499-10503
  30. Sellam, D., Bonne, M., Arrii-Clacens, S., Lafaye, G., Bion, N., Tezkratt, S., Royer, S., Marécot, P., Duprez, D. (2010). Simple approach to prepare mesoporous silica supported mixed-oxide nanoparticles by in situ autocombustion procedure. Catal. Today, 157: 131-136
  31. Yang, E., Noha, Y., Ramesh, S., Lim, S., Moon, D. (2015). The effect of promoters in La0.9M0.1Ni0.5Fe0.5O3 (M = Sr, Ca) perovskite catalysts on dry reforming of methane. Fuel Process Technol, 134: 404-413
  32. Akri, M., Chafik, T., Granger, P., Ayrault, P., Batiot-Dupeyrat, C. (2016). Novel nickel promoted illite clay based catalyst for autothermal dry reforming of methane. Fuel, 178: 139–147
  33. Liu, B.S., Au, C.T. (2003). Carbon deposition and catalyst stability over La2NiO4/g-Al2O3 during CO2 reforming of methane to syngas. Appl. Catal. A. Gen., 244: 181-195
  34. Rodulfo-Baechler, S.M.A., Pernia, W., Aray, I., Figueroa, H., Gonzalez-Cortes, S.L. (2006). Influence of lanthanum carbonate phases of Ni/La0.98Sr0.02O x catalyst over the oxidative transformation of methane. Catal. Lett, 112: 231–237
  35. Naeem, M.A., Al-Fatesh, A.S., Abasaeed, A.E., Fakeeha, A.H. (2014). Activities of Ni-based nano catalysts for CO2–CH4 reforming prepared by polyol process. Fuel Process Technol, 122: 141–152
  36. Tao, K., Shi, L., Ma, Q., Wang, D., Zeng, C., Kong, C., Wu, M., Chen, L., Zhou, S., Hu, Y., Tsubaki, N. (2013). Methane reforming with carbon dioxide over mesoporous nickel–alumina composite catalyst. Chem. Eng. J, 221: 25–31
  37. Liu, H., Bel Hadjltaief, H., Benzina, M., Gàlvez, M.E., Da Costa, P. (2019). Natural clay based nickel catalysts for dry reforming of methane: On the effect of support promotion (La, Al, Mn). Int. J. Hydrogen Energy, 44(1): 246-255
  38. Barros, B.S., Kulesza, J., de Araújo Melo, D.M., Kienneman, A. (2015). Nickel-based catalyst precursor prepared via microwave-induced combustion method: Thermodynamics of synthesis and performance in dry reforming of CH4. Mat. Res,18: 732-739
  39. Amin, M.H., Putla, S., Bee Abd Hamid, S., Bhargava, S.K. (2015). Understanding the role of lanthanide promoters on the structure–activity of nanosized Ni/-Al2O3 catalysts in carbon dioxide reforming of methane. Applied Catal. A: Gen, 492: 160–168
  40. Istadi, I., Anggoro, D.D., Amin, N.A.S., Ling, D.H.W. (2011). Catalyst deactivation simulation through carbon deposition in carbon dioxide reforming over Ni/CaO-Al2O3 catalyst. Bull. Chem. React. Eng. Catal. 6(2): 129-136
  41. Gallego, G.S., Batiot-Dupeyrat, C., Barrault, J., Mondragon, F. (2008). Dual Active-Site Mechanism for Dry Methane Reforming over Ni/La2O3 Produced from LaNiO3 Perovskite. Ind. Eng. Chem. Res, 47: 9272–9278

Last update: 2021-08-05 12:07:06

No citation recorded.

Last update: 2021-08-05 12:07:06

  1. A review on dry reforming of methane over perovskite derived catalysts

    Bhattar S.. Catalysis Today, 2020. doi: 10.1016/j.cattod.2020.10.041
  2. Anti-sintering mesoporous Ni–Pd bimetallic catalysts for hydrogen production via dry reforming of methane

    Pan C.. International Journal of Hydrogen Energy, 45 (32), 2020. doi: 10.1016/j.ijhydene.2020.04.066
  3. A review on perovskite catalysts for reforming of methane to hydrogen production

    Bian Z.. Renewable and Sustainable Energy Reviews, 127 , 2020. doi: 10.1016/j.rser.2020.110291
  4. Dry Reforming of Methane over Ni–Al2O3 and Ni–SiO2 Catalysts: Role of Preparation Methods

    Dekkar S.. Catalysis Letters, 127 (8), 2020. doi: 10.1007/s10562-020-03120-3