Operating Conditions and Composition Effect on the Hydrogenation of Carbon Dioxide Performed over CuO/ZnO/Al2O3 Catalysts

*Djaouida Allam -  Laboratoire de Chimie Appliquée et de Génie Chimique, Université M. Mammeri de Tizi-Ouzou , BP .17 R.P 15000 Tizi-Ouzou, Algeria
Salem Cheknoun -  Laboratoire de Chimie Appliquée et de Génie Chimique, Université M. Mammeri de Tizi-Ouzou , BP .17 R.P 15000 Tizi-Ouzou, Algeria
Smain Hocine -  Laboratoire de Chimie Appliquée et de Génie Chimique, Université M. Mammeri de Tizi-Ouzou , BP .17 R.P 15000 Tizi-Ouzou, Algeria
Received: 20 Oct 2018; Revised: 2 Jul 2019; Accepted: 9 Jul 2019; Published: 1 Dec 2019; Available online: 30 Sep 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Abstract

A series of catalysts constituted of mixed copper and zinc oxides supported on alumina were prepared by co-precipitation method. The cooper content was in the 10-90 wt.% range. Their catalytic behavior in the hydrogenation of carbon dioxide to methanol was investigated at high pressure (up to 75 bars). The catalysts were characterized by elemental analysis, N2-adsorption, N2O-chemisorptions, and X-ray diffraction (XRD). The catalysts showed a clear activity in the hydrogenation reaction that could be correlated to the surface area of the metallic copper and to the reaction pressure. The CuO/ZnO/Al2O3 catalyst with a Cu/Zn/Al weight ratio of 60/30/10, exhibits the highest carbon dioxide conversion and methanol selectivity. Finally, a mechanism pathway has been proposed on copper active sites of (Cu0/CuI) oxidation state. Copyright © 2019 BCREC Group. All rights reserved

 

Keywords
carbon dioxide; hydrogenation; methanol; CuO/ZnO/Al2O3 catalysts

Article Metrics:

  1. Vora, B.V., Marker, T.L., Barge, P.T., Nilsen, H.R., Kvisle, S., Fuglerud, T. (1997). Economic Route for Natural Gas Conversion to Ethylene and Propylene. Stud. In. Surf. Sci. Catal., 107: 87-98.
  2. Behrens, M. (2014). Heterogeneous Catalysis of CO2 Conversion to Methanol on Copper Surfaces. Angew. Chem. Int. Ed., 53: 12022-12024.
  3. Inui, T., Hara, H., Takeguchi, T., Kim, J. (1997). Structure and function of Cu-based composite catalysts for highly effective synthesis of methanol by hydrogenation of CO2 and CO. Catal. Today., 36: 25-32.
  4. Ma, Y., Sun, Q., Wu, D., Fan, W., Zhang, Y., Deng, J. (1998). A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation. Appl. Catal. A., 171: 45-55.
  5. Arena, F., Barbera, K., Italiano, G., Bonura, G., Spadaro, L., Frusteri, F. (2007). Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J. Catal., 249: 185-194.
  6. Koppel, R.A., Baiker, A. (1992). Copper/zirconia catalysts for the synthesis of methanol from carbon dioxide: Influence of preparation variables on structural and catalytic properties of catalysts. Appl. Catal., 84: 77-102.
  7. Satio, M., Fujitani, T., Takeuchi, M. (1996). Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen. Appl. Catal., 138: 311-318.
  8. Brown, J.A., Homs, N., Bell, A.T. (1990). Hydrogenation of CO2 and CO2/CO mixtures over copper-containing catalysts. J. Catal., 124: 73-85.
  9. Lee, J.S., Moon, K.I., Lee, S.H., Lee, S.Y., Kim, Y.G. (1995). Modified Cu/ZnO/Al2O3 catalysts for methanol synthesis from CO2/H2 and CO/H2. Catal. Lett., 34: 93-99.
  10. Frohlich, C., Koppel, R.A., Baiker, A., Kilo, M., Wokaun, A. (1993). Hydrogenation of carbon dioxide over silver promoted copper/zirconia catalysts. Appl. Catal., 106: 275-293.
  11. Deng, J.F., Sun, Q., Zhang, Y.L., Wu, D., Chen, S.Y. (1996). A novel process for preparation of a Cu/ZnO/Al2O3 ultrafine catalyst for methanol synthesis from CO2 + H2: comparison of various preparation methods. Appl. Catal., 139: 75-85.
  12. Waugh, K.C. (2012). Methanol synthesis, Catal. Lett., 142: 1153-1166.
  13. Behrens, M., Studt, F., Kasatkin, I., Kühl, S., Hävecker, M., Abild-Pedersen,
  14. F., Zander, S., Girgsdies, F., Kurr, P., Kniep, B.L., Tovar, M., Fischer, R.W., Nørskov, J.K., Schlögl, R. (2012). The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Sci., 336: 893-897.
  15. Fujitani, T., Saito, M., Kanai, Y., Takeuchi, M., Moria, K., Watanabe, T., Kawai, M., Kakumoto, T. (1993). Methanol synthesis from CO2 and H2 over Cu/ZnO/Ga2O3 catalyst. Chem. Lett., 22: 1079-1080.
  16. Fornero, E.L., Sanguineti, P.B., Chiavassa, D.L., Bonivardi, A.L. (2013). Performance of ternary Cu–Ga2O3–ZrO2 catalysts in the synthesis of methanol using CO2-rich gas mixtures. Catal. Today., 213: 163-170.
  17. Ladera, R., Perez-Alonso, F.J. (2013). Catalytic valorization of CO2 via methanol synthesis with Ga-promoted Cu–ZnO–ZrO2 catalysts. Appl. Catal. B. Envir., 142: 241-248.
  18. Słoczyński, J., Grabowski, R., Olszewski, P., Kozłowska, A., Stoch, J., Lachowska, M., Skrzypek, J. (2006). Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2. Appl. Catal. A. General., 310: 127-137.
  19. Toyir, J., Ramoirez, P., de la Piscina, P.R., Fierro, J.L.G., Homs, N. (2001). Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: influence of metallic precursors. Appl. Catal. B. Envi., 34: 255-266.
  20. Arena, F., Mezzatesta, G., Zafarana, G., Trunfio, G., Frusteri, F., Spadaro, L. (2013). How oxide carriers control the catalytic functionality of the Cu-ZnO system in the hydrogenation of CO2 to methanol. Catal. Today., 210: 39-46.
  21. Bonura, G., Arena, F., Mezzatesta, G., Cannilla, C., Spadaro, L., Frusteri, F. (2011). Role of the ceria promoter and carrier on the functionality of Cu-based catalysts in the CO2-to-methanol hydrogenation reaction. Catal. Today., 171: 251-256.
  22. Pokrovski, K.A., Bell, A. (2006). Effect of dopants on the activity of Cu/M0.3Zr0.7O2 (M= Ce, Mn, and Pr) for CO hydrogenation to methanol. J. Catal., 244: 43-51.
  23. Melian-Cabrera, I., Lopez Granados, M., Terreros, P., Fierro, J.L.G. (1998). CO2 hydrogenation over Pd-modified methanol synthesis catalysts. Catal. Today., 45: 251-256.
  24. Zhang, L., Zhang, Y., Chen, S. (2012). Effect of promoter SiO2, TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2 hydrogenation. Appl. Catal. A. General., 415: 118-123.
  25. Guo, X., Mao, D., Lu, G., Wang, S., Wu, G. (2011). The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation. J. Mol. Catal. A Chem., 345: 60-68.
  26. Fujitani, T., Saito, M., Kanai, Y., Kakumoto, T., Watanabe, T., Nakamura, J., Uchijima, T. (1994). The role of metal oxides in promoting a copper catalyst for methanol synthesis. Catal. Lett., 25: 271-276.
  27. Toyir, J., de la Piscina, P.R., Fierron, J.L.G., Homs, N. (2001). Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: influence of support and promoter. Appl. Catal., 29: 207-215.
  28. Inui, T., Takeguch, T. (1991). Effective conversion of carbon dioxide and hydrogen to hydrocarbons. Catal. Today., 10: 95-106.
  29. Cai, W., de la Piscina, P.R., Toyir, J., Homs, N. (2015). CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods. Catal. Today., 242: 193-199.
  30. Fujimoto, K., Yu, Y. (1993). CO hydrogenation to methanol. New Aspects of Spillover Effect in Catalysis: For Development of Highly Active Catalysts. Studies in Surface Science and Catalysis, 77: 369-393.
  31. Sahibzada, M., Chadwick, D., Metcalfe, I.S. (1996). Hydrogenation of carbon dioxide to methanol over palladium-promoted Cu/ZnO/Al2O3 catalysts. Catal. Today., 29: 367-372.
  32. Gotti, A., Prins, R. (1998). Basic metal oxides as co-catalysts in the conversion of synthesis gas to methanol on supported palladium catalysts. J. Catal., 175: 302-311.
  33. Melian-Cabrera, I., Granados, M.L., Terreros, P., Fierro, J.L.G. (1998). CO2 hydrogenation over Pd-modified methanol synthesis catalysts. Catal. Today., 45: 251-256.
  34. Klier, K. (1982). Methanol synthesis. Adv. Catal., 31: 243-313.
  35. Nonneman, L.E.Y., Ponet, V. (1990). On the problem of the activity in methanol synthesis of supported, unpromoted copper catalysts. Catal. Lett., 7: 213-217.
  36. Herman, R.G., Klier, K., Simmons, G., Finn, B.P., Bulko, J.W., Kobylinski, T.P. (1979). Catalytic synthesis of methanol from CO H2: I. Phase composition, electronic properties, and activities of the Cu/ZnO/M2O3 catalysts. J. Catal., 56: 407-429.
  37. Kau, L., Hodgson, K.O., Solomon, E.I. (1989). X-ray absorption edge and EXAFS study of the copper sites in zinc oxide methanol synthesis catalysts. J. Am. Chem. Soc., 111: 7103-7109.
  38. Okamoto, Y., Fukino, K., Imanaka, T., Teranishi, S. (1983). Surface characterization of copper(II) oxide-zinc oxide methanol-synthesis catalysts by x-ray photoelectron spectroscopy. 1. Precursor and calcined catalysts. J. Phys. Chem., 87: 3740-3747.
  39. Chinchen, G.C., Waugh, K.C., Whan, D.A. (1986). The activity and state of the copper surface in methanol synthesis catalysts. Appl. Catal., 25: 101-107.
  40. Denise, B., Sneeden, R.P.A., Beguin, B., Cherifi, O. (1987). Supported copper catalysts in the synthesis of methanol: N2O-titrations. Appl. Catal., 30: 353-363.
  41. Chinchen, G.C., Hay, C.M., Vandervell, H.D., Waugh, K.C. (1987). The measurement of copper surface areas by reactive frontal chromatography. J. Catal.,103: 79-86.
  42. Li, D., Xu, S., Cai, Y., Chen, C., Zhan, Y., Jiang, L. (2017). Characterization and Catalytic Performance of Cu/ZnO/Al2O3 Water–Gas Shift Catalysts Derived from Cu–Zn–Al Layered Double Hydroxides. Ind. Eng. Chem. Res., 56: 3175-3183.
  43. Evans, J.W., Wainwright, M.S., Bridgewater, A.J., Young, D.J. (1983). On the determination of copper surface area by reaction with nitrous oxide. Appl. Catal., 7: 75-83.
  44. Meli´an-Cabrera, I., L´opez-ranados, M., Fierro, J.L.G. (2002). Reverse topotactic transformation of a Cu–Zn–Al catalyst during wet Pd impregnation: relevance for the performance in methanol synthesis from CO2/H2 mixtures. J. Catal., 210: 273-284.
  45. Ernsta, K.H., Campbell, C.T., Moretti, G. (1992). Kinetics of the reverse water-gas shift reaction over Cu (110). J. Catal., 134: 66-74.
  46. Witoon, T., Permsirivanich, T., Donphai, W., Jaree, A., Chareonpanich, M. (2013). CO2 hydrogenation to methanol over Cu/ZnO nanocatalysts prepared via a chitosan-assisted co-precipitation method. Fuel. Proc. Tech., 116: 72-78.
  47. Habibi, M.H., Karimi, B. (2014). Preparation of nanostructure CuO/ZnO mixed oxide by sol–gel thermal decomposition of a CuCO3 and ZnCO3: TG, DTG, XRD, FESEM, and DRS investigations. J. Ind. Eng. Chem., 20: 925-229.
  48. Lei, H., Hou, Z., Xie, J. (2016). Hydrogenation of CO2 to CH3OH over CuO/ZnO/Al2O3 catalysts prepared via a solvent-free routine, Fuel., 164: 191-198.
  49. Dong, X., Li, F., Zhao, N., Tan, Y., Wang, J., Xiao, F. (2017). CO2 hydrogenation to methanol over Cu/Zn/Al/Zr catalysts prepared by liquid reduction. Chin. J. Catal., 38: 717-725.
  50. Li, L., Mao, D., Yu, J., Guo, X. (2015). Highly selective hydrogenation of CO2 to methanol over CuO–ZnO–ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method. J. Power. Sources., 279: 394-404.
  51. Gao, P., Li, F., Xiao, F., Zhao, N., Sun, N., Wei, W., Sun. Y. (2012). Preparation and activity of Cu/Zn/Al/Zr catalysts via hydrotalcite-containing precursors for methanol synthesis from CO2 hydrogenation. Catal. Sci. Technol., 2: 1447-1454.
  52. Fujita, S.I., Usui, M.,Takezawa, N. (1992). Mechanism of the reverse water gas shift reaction over Cu/ZnO catalyst. J. Catal., 134: 220-225.
  53. Gine’s, M.J.L., Marchi, A.J., Apesteguı´a, C.R. (1997). Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts, Catal. A., 154: 155-171.
  54. Schilke, T.C., Fisher, I.A., Bell, A.T. (1999). In Situ Infrared Study of Methanol Synthesis from CO2/H2 on Titania and Zirconia Promoted Cu/SiO2, J. Catal., 184: 144-156.
  55. Yoshihara, J., Campbell, C.T. (1996). Methanol Synthesis and Reverse Water–Gas Shift Kinetics over Cu(110) Model Catalysts: Structural Sensitivity. J. Catal., 161: 776-782.
  56. Yoshihara, J., Parker, S.C., Schafer, A., Campbell, C.T. (1995). Methanol synthesis and reverse water-gas shift kinetics over clean polycrystalline copper. Catal. Lett., 31: 313-324.
  57. Jung, K.D., Bell., A.T. (2000). Role of hydrogen spillover in methanol synthesis over Cu/ZrO2. J. Catal., 193: 207-223.
  58. Chiavassa, D.L., Collins, S.E., Bonivardi, A.L., Baltanas, M.A. (2009). Methanol synthesis from CO2/H2 using Ga2O3-Pd/silica catalysts: kinetic modeling. Chem. Eng. J., 150: 204-212.
  59. Lim, H.W., Park, M.J., Kang, S.H., Chae, H.J., Bae, J.W., Jun, K.W. (2009). Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst: influence of carbon dioxide during hydrogenation. Ind. Eng. Chem. Res., 48: 10448-10455.
  60. Fujita, S., Usui, M., Ito, H.,Takezawa, N. (1995). Mechanisms of methanol synthesis from carbon dioxide and from carbon monoxide at atmospheric pressure over Cu/ZnO. J. Catal.,157: 403-413.
  61. Bailey, S., Froment, G.F., Snoeck, J.W., Waugh, K.C. (1995). A drifts study of the morphology and surface adsorbate composition of an operating methanol synthesis catalys. Catal. Lett., 30: 99-111.
  62. Chinchen, M.S., Spencer, K.C., Waugh-Whan, D.A. (1987). Promotion of methanol synthesis and the water-gas shift reactions by adsorbed oxygen on supported copper catalysts. J. Chem. Soc., Faraday Trans. 1., 83: 2193-2212.