Comparison of Lewis Acidity between Al-MCM-41 Pure Chemicals and Al-MCM-41 Synthesized from Bentonite

*Tewfik Ali-Dahmane -  Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 , BP-1524 El-Mnaouer, 31000 Oran, Algeria École Supérieure en Sciences Appliquées de Tlemcen (ESSAT), BP 165 RP Bel horizon, 13000 Tlemcen, Algeria
lamia Brahmi -  Laboratoire de Chimie fine L.C.F., Université Oran1 , BP-1524 El-Mnaouer, 31000 Oran, Algeria Université A Belkaid, B.P 119, 22 rue Abi Ayad Abdelkrim, Fg Pasteur, 13000 Tlemcen, Algeria
Rachida Hamacha -  Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 , BP-1524 El-Mnaouer, 31000 Oran, Algeria
Salih Hacini -  Laboratoire de Chimie fine L.C.F., Université Oran1 , BP-1524 El-Mnaouer, 31000 Oran, Algeria
Abdelkader Bengueddach -  Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 , BP-1524 El-Mnaouer, 31000 Oran, Algeria
Received: 5 Oct 2018; Revised: 14 Jan 2019; Accepted: 1 Feb 2019; Published: 1 Aug 2019; Available online: 30 Apr 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image

This study focused on the Lewis acidity of Al-MCM-41 prepared from bentonite (Al-MCM-bentonite) as silica and aluminum source simultaneously. This acidity was compared with Al-MCM-41 synthesized from pure chemicals reagents (Al-MCM-standard). Structural analysis showed that the substitution of the silicon atom by the aluminum atom decreases the structural order of Al-MCM-standard, whereas Al-MCM-bentonite has a better structural organization. The Lewis acidity of the Al-MCM-bentonite was evaluated in allylation reaction of benzaldehyde with allyltrimethylsilane and pyridine adsorption experiments. The results showed that the difference in acidity between Al-MCM-standard and Al-MCM-bentonite is due to the amount of aluminum incorporated into the framework of our mesoporous materials. According to the EDX analysis, the incorporation of aluminum in Al-MCM-standard (Si/Al = 13.47) is more important than in Al-MCM-bentonite (Si/Al = 43.64). This explains the low acidity of Al-MCM-bentonite, and the moderate yields in the allylation reactions of benzaldehyde with allyltrimethylsilane. Copyright © 2019 BCREC Group. All rights reserved


Mesoporous materials; Al-MCM-41; Algerian bentonite; Lewis acid; Allylation of benzaldehyde

Article Metrics:

  1. Mayr, H., Gorath, G. (1995). Kinetics of the Reactions of Carboxonium Ions and Aldehyde Boron Trihalide Complexes with Alkenes and Allylsilanes. Journal of the American Chemical Society, 117: 7862-7868.
  2. Aggarwal, V.K, Vennall, G.P. (1996). Scandium trifluoromethanesulfonate, a novel catalyst for the addition of allyltrimethylsilane to aldehydes. Tetrahedron Letters, 37: 3745-3746.
  3. Zhang, W.C., Viswanathan, G.S., Li, C.J. (1999). Scandium triflate catalyzed in situ Prins-type cyclization: formations of 4-tetrahydropyranols and ethers. Chemical Communications, 0: 291-292.
  4. Fang, X., Watkin, J.G., Warner, B.P. (2000). Ytterbium trichloride-catalyzed allylation of aldehydes with allyltrimethylsilane. Tetrahedron Letters, 41: 447-449.
  5. Watahiki, T., Oriyama, T. (2002). Iron (III) chloride-catalyzed effective allylation reactions of aldehydes with allyltrimethylsilane. Tetrahedron Letters, 43: 8959-8962.
  6. Durand, A.C., Brahmi, L., Lahrech, M., Hacini, S., Santelli, M. (2005). Preparation of 4‐Arylcyclopentenes by Sequential Diallylation of Arylaldehydes and Ring‐Closing Metathesis. Synthetic Communications, 35: 1825-1833.
  7. Brahmi, L., Ali-Dahmane, T., Hamacha, R., Hacini, S. (2016). Catalytic Performance of Al-MCM-41 Catalyst for the Allylation of Aromatic Aldehydes with Allyltrimethylsilane: Comparison with TiCl4 as Lewis acid. Journal of Molecular Catalysis A: Chemical, 423: 31-40.
  8. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenkert, J.L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114: 10834-10843.
  9. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359: 710-712.
  10. Cestors, Y., Haller, G.L. (2001). Several factors affecting Al-MCM-41 synthesis. Microporous and Mesoporous Materials, 43: 171-179.
  11. Shylesh, S., Singh, A.P. (2005). Vanadium-containing ordered mesoporous silicates: Does the silica source really affect the catalytic activity, structural stability, and nature of vanadium sites in V-MCM-41. Journal of Catalysis, 233: 359-371.
  12. Gallo, R., Pastore, O., Schuchardt, U. (2008). Study of the effect of the base, the silica and the niobium sources on the [Nb]-MCM-41 synthesized at room temperature. Journal of Non-Crystalline Solids, 354: 1648-1653.
  13. Fontes, M.S.B., Melo, D.M.A., Costa, C.C., Braga, R.M., Melo, M.A.F., Alves, J.A.B., Silva, M.L.P. (2016). Effect of different silica sources on textural parameters of molecular sieve MCM-41. Ceramica, 62: 85-90.
  14. Ali-Dahmane, T., Brahmi, L., Hamacha, R., Benguddach, A. (2017). How to control the structural properties of purely siliceous MCM-41. Annales de Chimie Sciences des Matériaux, 40: 149-163.
  15. Xie, Y.L., Zhang, Y., Ouyang, J., Yang, H.M. (2014). Mesoporous material Al-MCM-41 from natural halloysite. Physics and Chemistry of Minerals, 41: 497-503.
  16. Yu, Z.H., Wang, Y., Liu, X.Y., Sun, J.B., Sha, G.Y., Yang, J.H., Meng, C.G.A. (2014). A novel pathway for the synthesis of ordered mesoporous silica from diatomite. Materials Letters, 119: 150-153.
  17. Du, C.F., Yang, H.M. (2012). Investigation of the physicochemical aspects from natural kaolin to Al-MCM-41 mesoporous materials. Journal of Colloid Interface Science, 369: 216-222.
  18. Yang, H., Deng, Y., Du, C., Jin, S. (2010). Novel synthesis of ordered mesoporous materials Al-MCM-41 from bentonite. Applied Clay Science, 47: 351-355.
  19. Ali-Dahmane, T., Adjdir, M., Hamacha, R., Villieras, F., Bengueddach, A., Weidler, P.G. (2014). The synthesis of MCM-41 nanomaterial from Algerian Bentonite: The effect of the mineral phase contents of clay on the structure properties of MCM-41. Comptes Rendus Chimie, 17: 1-6.
  20. Chang, H.L., Chun, C.M., Aksay, I.A., Shih, W.H. (1999). Conversion of Fly Ash into Mesoporous Aluminosilicate. Industrial & Enggineering Chemistry Research, 38: 973-977.
  21. Chandrasekar, G., You, K.S., Ahn, J.W., Ahn, W.S. (2008) Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash. Microporous and Mesoporous Materials, 111: 455-462.
  22. Liu, Z.S., Li, W.K., Huang, C.Y. (2014). Synthesis of mesoporous silica materials from municipal solid waste incinerator bottom ash. Waste Management, 34: 893-900.
  23. Yang, G., Deng, Y.X., Ding, H., Lin, Z.X., Shao, Y.K., Wang, Y. (2015). A facile approach to synthesize MCM-41 mesoporous materials from iron ore tailing: Influence of the synthesis conditions on the structural properties. Applied Clay Science, 111: 61-66.
  24. Fu, P.F., Yang, T.W., Feng, J., Yang, H.F. (2015). Synthesis of mesoporous silica MCM-41 using sodium silicate derived from copper ore tailings with an alkaline molted-salt method. Journal of Industrial and Engineering Chemistry, 29: 338-343.
  25. Lin, L.Y., Bai, H. (2013). Efficient Method for Recycling Silica Materials from Waste Powder of the Photonic Industry. Environmental Science & Technology, 47:4636-4643.
  26. Lin, L.Y., Kuo, J.T., Bai, H. (2011). Silica materials recovered from photonic industrial waste powder: its extraction, modification, characterization and application. Journal of Hazardous Materials, 192: 255-262.
  27. Liou, T.H. (2011). A green route to preparation of MCM-41 silicas with well-ordered mesostructure controlled in acidic and alkaline environments. Chemical Engineering Journal, 171: 1458-1468.
  28. Wang, W.X., Martin, J.C., Fan, X.T., Han, A.J., Luo, Z.P., Sun, L.Y. (2012). Silica Nanoparticles and Frameworks from Rice Husk Biomass. ACS Applied Materials & Interfaces, 4: 977-981.
  29. Zeng, W.T., Bai, H. (2014). Swelling-agent-free synthesis of rice husk derived silica materials with large mesopores for efficient CO2 capture. Chemical Engineering Journal, 251: 1-9.
  30. Ghorbani, F., Younesi, H., Mehraban, Z., Çelik, M.S., Ghoreyshi, A.A., Anbia, M.J. (2013). Preparation and characterization of highly pure silica from sedge as agricultural waste and its utilization in the synthesis of mesoporous silica MCM-41. Journal of the Taiwan Institute of Chemical Engineers, 44: 821-828.
  31. Dodson, J.R., Cooper, E.C., Hunt, A.J., Matharu, A., Cole, J., Minihan, A., Clark, J.H., Macquarrie, D.J. (2013). Alkali silicates and structured mesoporous silicas from biomass power station wastes: the emergence of bio-MCMs. Green Chemistry, 15: 1203-1210.
  32. Adjdir, M., Ali-Dahmane, T., Weidler, P.G., Friedrich, F., Scherer, T. (2009). The synthesis of Al-MCM-41 from volclay-A low-cost Al and Si source. Applied Clay Science, 46: 185-189.
  33. Adjdir, M., Ali-Dahmane, T., Weidler, P.G. (2009). The structural comparison between Al-MCM-41 and B-MCM-41. Comptes Rendus Chimie, 12: 793-800.
  34. Brunauer, S., Emmett, P.H., Teller, E.J. (1938). Adsorption of Gases in Multimolecular layers. Journal of the American Chemical Society, 60: 309-319.
  35. Talha, Z., Bachir, C., Bellahouel, S.Z.S., Bengueddach, A., Villiéras, F., Pelletier, M., Weidler, P.G., Hamacha, R. (2017). Al-Rich Ordered Mesoporous Silica SBA-15 Materials: Synthesis, Surface Characterization and Acid Properties. Catalysis Letters, 147(8): 2116 - 2126.
  36. Hui, K.S., Chao, C.Y.H. (2006). Synthesis of MCM-41 from coal fly ash by a green approach: Influence of synthesis pH. Journal of Hazardous Materials, 137: 1135-1148.
  37. Campos, J.M., Lourenco, J.P., Fernandes, A., Ribeiro, M.R. (2008). Mesoporous Ga-MCM-41: A very efficient support for the heterogenisation of metallocene catalysts. Catalysis Communications, 10: 71-73.
  38. Araujo, R.S., Azevedo, D.C.S., Cavalcante, C.L., Jimenez-Lopez, A., Rodriguez-Castellon, E. (2008). Adsorption of polycyclic aromatic hydrocarbons (PAHs) from isooctane solutions by mesoporous molecular sieves: Influence of the surface acidity. Microporous and Mesoporous Materials, 108: 213-222.
  39. Jentys, A., Kleestorfer, K., Vinek, H. (1999). Concentration of surface hydroxyl groups on MCM-41. Microporous and Mesoporous Materials, 27: 321-328.
  40. Conesa, T.D., Hidalgo, J.M., Luque, R., Campelo, J.M., Romero, A.A. (2006). Influence of the acid–base properties in Si-MCM-41 and B-MCM-41 mesoporous materials on the activity and selectivity of ɛ-caprolactam synthesis. Applied Catalysis A, 299: 224-234.
  41. Chanquıia, C., Andrini, L., Fernandez, J., Crivello, M., Requejo, F., Herrero, E.R., Eimer, G.A. (2010). Influence of the synthesis conditions on the physicochemical properties and acidity of Al-MCM-41 as catalysts for the cyclohexanone oxime rearrangement. The Journal of Physical Chemistry, 114: 12221-12229.
  42. Aguado, J., Serrano, D.P., Escola, J.M. (2000). A sol–gel approach for the room temperature synthesis of Al-containing micelle-templated silica. Microporous and Mesoporous Materials, 34: 43-54.
  43. Sang, Y., Li, H., Zhu, M., Ma, K., Jiao, Q., Wu, Q. (2013). Catalytic performance of metal ion doped MCM-41 for methanol dehydration to dimethyl ether. Journal of Porous Materials, 20: 1509-1518.
  44. Vaschetto, E.G., Pecchi, G.A., Casuscelli, S.G., Eimer, G.A. (2014). Nature of the active sites in Al-MCM-41 nano-structured catalysts for the selective rearrangement of cyclohexanone oxime toward ɛ-caprolactam. Microporous and Mesoporous Materials, 200: 110-116.
  45. Morales, I.J., Recio, M.M., Gonzalez, J.S., Torres, P.M., Lopez, A.J. (2015). Production of 5-hydroxymethylfurfural from glucose using aluminium doped MCM-41 silica as acid catalyst. Applied Catalysis B: Environmental, 164: 70-76.
  46. Kumar, P., Mal, N., Oumi, Y., Yamana, K., Sano, T. (2001). Mesoporous materials prepared using coal fly ash as the silicon and aluminium source. Journal of Materials Chemistry, 11: 3285-3290.