skip to main content

Development of CaO/PVA Catalyst from Fish Bone for Biodiesel Production

Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia (IIUM), Jalan Gombak, 53100 Kuala Lumpur, Malaysia

Received: 1 Oct 2018; Revised: 28 Sep 2018; Accepted: 30 Sep 2018; Available online: 25 Jan 2019; Published: 15 Apr 2019.
Editor(s): Asmida Ideris, Istadi Istadi
Open Access Copyright (c) 2019 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

In this study, calcium oxide were synthesized from fish bone waste and the optimum condition : catalyst amount, temperature and methanol to oil ratio (molar) for biodiesel production were studied. The calcium oxide (CaO) derived from fish bone wastes was then supported on polyvinyl alcohol (PVA) to easily separate the catalyst and biodiesel. Fish bone were dried in oven at 70 oC for 24 hr before calcination process at 900 oC for 4 hours. The biodiesel yield was studied by varying three parameters, namely methanol to oil ratio (molar) (6:1 - 20:1), amount of catalyst (1-10 wt%) and temperature (55-65 oC). The highest yield obtained from this study was at 80.40 % with catalyst amount of 10 wt%, methanol to oil ratio (molar) of 20:1 and temperature of 65  oC. 

Fulltext View|Download
Keywords: Calcium Oxide; Fish Bone; Calcination; Biodiesel; PVA; Transesterification

Article Metrics:

  1. Ma, F., Hanna, M.A. (1999). Biodiesel Production: A Review. Bioresource Technology, 70(1): 1-15
  2. Niju, S., Meera, K., Begum, S., Anantharaman, N. (2014). Modification of Egg Shell and Its Application in Biodiesel Production. Journal of Saudi Chemical Society, 18(5): 702-706
  3. Viriya-Empikul, N., Krasae, P., Puttasawat, B., Yoosuk, B., Chollacoop, N., Faungnawakij, K. (2010). Waste Shells of Mollusk and Egg as Biodiesel Production Catalysts. Bioresource Technology, 101(10): 3765-3767
  4. Wei, Z., Xu, C., Li, B. (2009). Application of Waste Eggshell as Low-Cost Solid Catalyst for Biodiesel Production. Bioresource Technology, 100(11): 2883-2885
  5. Liyanage, C.D., Pieris, M. (2015). A Physico-Chemical Analysis of Coconut Shell Powder. Procedia Chemistry, 16: 222-228
  6. Sulaiman, S., Ruslan, N. (2017). A Heterogeneous Catalyst from a Mixture of Coconut Waste and Eggshells for Biodiesel Production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(2): 154-159
  7. Obadiah, A., Swaroopa, G.A., Kumar, S.V., Jeganathan, K.R., Ramasubbu, A. (2012). Biodiesel Production from Palm Oil Using Calcined Waste Animal Bone as Catalyst. Bioresource Technology, 116(0): 512-516
  8. Chen, K.-T., Wang, J.-X., Dai, Y.-M., Wang, P.-H., Liou, C.-Y., Nien, C.-W., Wu, J.-S., Chen, C.-C. (2013). Rice Husk Ash as a Catalyst Precursor for Biodiesel Production. Journal of the Taiwan Institute of Chemical Engineers, 44(4): 622-629
  9. Musa, I.A. (2016). The Effects of Alcohol to Oil Molar Ratios and the Type of Alcohol on Biodiesel Production Using Transesterification Process. Egyptian Journal of Petroleum, 25(1): 21-31
  10. Gashaw, A., Getachew, T., Teshita, A. (2015). A Review on Biodiesel Production as Alternative Fuel. J. For. Prod. Ind., 4: 80-85
  11. Jagadale, S., Jugulkar, L. (2012). Review of Various Reaction Parameters and other Factors Affecting on Production of Chicken Fat Based Biodiesel. International Journal of Modern Engineering Research, 2(2): 407-411
  12. Sulaiman, S., Amin, M. (2016). Fish Bone-Catalyzed Methanolysis of Waste Cooking Oil. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2): 245-249
  13. Widiarti, N., Wijianto, W., Wijayati, N., Harjito, H., Kusuma, S.B.W., Prasetyoko, D., Suprapto, S. (2017). Catalytic Activity of Calcium Oxide From Fishbone Waste in Waste Cooking Oil Transesterification Process. Jurnal Bahan Alam Terbarukan, 6(2): 97-106

Last update:

No citation recorded.

Last update:

No citation recorded.