Microwave-assisted Synthesis of ZnO Nanoparticles Stabilized with Gum Arabic: Effect of Microwave Irradiation Time on ZnO Nanoparticles Size and Morphology

DOI: https://doi.org/10.9767/bcrec.0.0.3320.xxx-xxx
Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 01-10-2018
Published: 15-04-2019
Section: The 4th International Conference of Chemical Engineering & Industrial Biotechnology (ICCEIB 2018)
Fulltext PDF Tell your colleagues Email the author

The conventional heating methods of nanoparticle synthesis regularly depend on the energy inputs from outer heat sources that resulted high energy intake and low reaction competences. In this paper ZnO nanoparticles stabilized with gum arabic are synthesized using precipitating method assisted by simple and cost effective microwave heating technique. The objective of this work is to investigate the effect of microwave irradiation time towards ZnO nanoparticles morphology and size. The effect of microwave irradiation time has been investigated at 2, 4, 6, and 10 minutes. Dynamic Light Scattering (DLS) was employed to measure the size of ZnO nanoparticles. Ultraviolet–Visible spectroscopy (UV-vis), Fourier-Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD) were used for the characterization of the ZnO nanoparticles. UV-vis absorption spectrum was found in the range of 350 nm indicating the absorption peak of ZnO nanoparticles. FTIR spectra showed peaks range from 424 to 475 cm1 which indicating standard of Zn–O stretching. The presence of (100), (002), and (101) planes were apparent in the XRD result, indicating the crystalline phase of ZnO nanoparticles. The increase in the microwave irradiation time affected the processes of nucleation and crystal growth promoted larger ZnO nanoparticles size. Microwave irradiation time at 2 minutes was selected as the best microwave irradiation time for smallest ZnO nanoparticles averaging about 168 nm sizes based on DLS analysis. Copyright © 2019 BCREC Group. All rights reserved

Received: 1st October 2018; Revised: 22nd November 2018; Accepted: 12nd December 2018; Available online: 25th January 2019; Published regularly: April 2019

How to Cite: Pauzi, N., Zain, N.M., Yusof, N.A.A. (2019). Microwave-assisted Synthesis of ZnO Nanoparticles Stabilized with Gum Arabic: Effect of Microwave Irradiation Time on ZnO Nanoparticles Size and Morphology. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 182-188 (doi:10.9767/bcrec.14.1.3320.182-188)

Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.3320.182-188

 

Keywords

Microwave Heating; Irradiation Time; ZnO Nanoparticle; Gum Arabic

  1. Norlin Pauzi 
    Faculty Chemical and Natural Resources Engineering, University Malaysia Pahang , Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
  2. Norashikin Mat Zain 
    Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang , Highway Tun Razak, 26300 Kuantan, Pahang, Malaysia
  3. Nurul Amira Ahmad Yusof 
    Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang , Highway Tun Razak, 26300 Kuantan, Pahang, Malaysia
  1. Naveed Ul Haq, A., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M., Khan, I. (2017). Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity. J. Nanomater., 2017: 1-14 (Article ID 8510342)
  2. Sathya, M., Pushpanathan, K. (2018). Synthesis and Optical Properties of Pb Doped ZnO Nanoparticles. Appl. Surf. Sci., 449: 346–357.
  3. Ouhaibi, A., Ghamnia, M., Dahamni, M.A., Heresanu, V., Fauquet, C., Tonneau, D. (2018). The Effect of Strontium Doping on Structural and Morphological Properties of ZnO Nanofilms Synthesized by Ultrasonic Spray Pyrolysis Method. J. Sci. Adv. Mater. Devices, 3: 29–36.
  4. Kumaresan, N., Ramamurthi, K., Ramesh Babu, R., Sethuraman, K., Moorthy Babu, S. (2017). Hydrothermally Grown ZnO Nanoparticles for Effective Photocatalytic Activity. Appl. Surf. Sci., 418: 138–146.
  5. Irshad, K., Khan, M.T., Murtaza, A. (2018). Synthesis and Characterization of Transition-Metals-Doped ZnO Nanoparticles by Sol-Gel Auto-Combustion Method. Phys. B Condens. Matter, 543: 1–6.
  6. Unalan, H.E., Hiralal, P., Rupesinghe, N., Dalal, S., Milne, W.I., Amaratunga, G.A.J. (2008). Rapid Synthesis of Aligned Zinc Oxide Nanowires. Nanotechnology, 19(25): 5608–5612
  7. Gray, R.J., Jaafar, A.H., Verrelli, E., Kemp, N.T. (2018). Method to Reduce the Formation of Crystallites in ZnO Nanorod Thin-Films Grown via Ultra-Fast Microwave Heating. Thin Solid Films, 662: 116-122.
  8. Abdelkader, R., Mohammed, B. (2016). Green Synthesis of Cationic Polyacrylamide Composite Catalyzed by An Ecologically Catalyst Clay Called Maghnite-H+ (Algerian MMT) Under Microwave Irradiation. Bull. Chem. React. Eng. Catal., 11(2): 170-175.
  9. Pauzi, N., Zain, N.M., Yusof, N.A.A. (2018). The Potential of Gallic Acid and Ascorbic Acid as Green Reducing Agent in ZnO Nanoparticle Synthesis. Malaysian J. Catal., 3: 13–16.
  10. Wojnarowicz, J., Chudoba, T., Gierlotka, S., Lojkowski, W. (2018). Effect of Microwave Radiation Power on the Size of Aggregates of ZnO NPs Prepared Using Microwave Solvothermal Synthesis. Nanomaterials, 8(5): 343–359
  11. Gaba, M., Dhingra, N. (2011). Microwave Chemistry: General Features and Applications. Indian J. Pharm. Educ. Res., 45: 175–183.
  12. Breitwieser, D., Moghaddam, M.M., Spirk, S., Baghbanzadeh, M., Pivec, T., Fasl, H., Ribitsch, V., Kappe, C.O. (2013). In Situ Preparation of Silver Nanocomposites on Cellulosic Fibers-Microwave vs. Conventional Heating. Carbohydr. Polym., 94: 677–686.
  13. Motshekga, S.C., Pillai, S.K., Sinha Ray, S., Jalama, K., Krause, R.W.M. (2012). Recent Trends in the Microwave-Assisted Synthesis of Metal Oxide Nanoparticles Supported on Carbon Nanotubes and Their Applications. J. Nanomater., 2012: 1-15. (Article ID 691503)
  14. Renard, D., Garnier, C., Lapp, A., Schmitt, C., Sanchez, C. (2012). Structure of Arabinogalactan-Protein from Acacia Gum: From Porous Ellipsoids to Supramolecular Architectures. Carbohydr. Polym., 90: 322–332.
  15. Sabyasachi Maiti, Sougata Jana, B.L. (2018). Cationic Polyelectrolyte–biopolymer Complex Hydrogel Particles for Drug Delivery. Des. Dev. New Nanocarriers, 223–256.
  16. Barik, P., Bhattacharjee, A., Roy, M. (2015). Preparation , Characterization and Electrical Study of Gum Arabic / ZnO Nanocomposites. Bull. Mater. Sci., 38: 1609–1616.
  17. Cho, S., Jung, S.-H., Lee, K.-H. (2008). Morphology-Controlled Growth of ZnO Nanostructures Using Microwave Irradiation: From Basic to Complex Structures. J. Phys. Chem. C, 112: 12769–12776.
  18. Barreto, G.P., Morales, G., Quintanilla, M.L.L. (2013). Microwave Assisted Synthesis of ZnO Nanoparticles : Effect of Precursor Reagents , Temperature , Irradiation Time , and Additives on Nano-ZnO Morphology Development. J. Mater., 2013: 1–12.
  19. Sulochana, M., Vani, C.S., Devi, D.K., Naidu, N.V.S., Sreedhar, B. (2013). Synthesis and Characterization of Gum Acacia-Stabilized Zinc Oxide Nanoparticles : A Green Approach and Microbial Activity. Am. J. Mater. Sci., 3: 169-177.
  20. Liu, M.H., Tseng, Y.H., Greer, H.F., Zhou, W., Mou, C.Y. (2012). Dipole Field Guided Orientated Attachment of Nanocrystals to Twin-Brush ZnO Mesocrystals. Chem. - A Eur. J., 18: 16104-16113.
  21. Bhattacharjee, S. (2016). DLS and Zeta Potential - What They Are and What They Are Not? J. Control. Release, 235: 337–351.
  22. Chirikov, S.N. (2016). Comparison of Particle Size Measurements of Some Aqueous Suspensions by Laser Polarimetry and Dynamic Light Scattering. J. Phys. Conf. Ser., 747: 012051
  23. Brar, S.K., Verma, M. (2011). Measurement of Nanoparticles by Light-Scattering Techniques. TrAC - Trends Anal. Chem., 30: 4–17.
  24. Hasanpoor, M., Aliofkhazraei, M., Delavari, H. (2015). Microwave-Assisted Synthesis of Zinc Oxide Nanoparticles. Procedia Mater. Sci., 11: 320–325.
  25. Kazemzadeh, S.M., Vaezi, M.R., Shokuhfar, A. (2011). The Effect of Microwave Irradiation Time on Appearance Properties of Silver Nanoparticles. Trans. Indian Inst. Met., 64: 261–264.
  26. Arzenšek, D., Podgornik, R., Kuzman, D. (2010). Dynamic Light Scattering and Application to Proteins in Solutions. In Seminar; University of Ljubljana: Ljubljana, Slovenia, 1–18
  27. Papadaki, D., Foteinis, S., Mhlongo, G.H., Nkosi, S.S., Motaung, D.E., Ray, S.S., Tsoutsos, T., Kiriakidis, G. (2017). Life Cycle Assessment of Facile Microwave-Assisted Zinc Oxide (ZnO) Nanostructures. Sci. Total Environ., 586: 566–575.
  28. Manoj, V., Karthika, M., Praveen Kumar, V.S.R., Boomadevi, S., Jeyadheepan, K., Karn, R.K., Balaguru, R.J.B., Pandiyan, S.K. (2014). Synthesis of ZnO Nanoparticles Using Carboxymethyl Cellulose Hydrogel. Asian J. Appl. Sci., 7: 798-803.
  29. Kumar, R., Singh, R.K., Singh, D.P., Savu, R., Moshkalev, S.A. (2016). Microwave Heating Time Dependent Synthesis of Various Dimensional Graphene Oxide Supported Hierarchical ZnO Nanostructures and Its Photoluminescence Studies. Mater. Des., 111: 291–300.
  30. Alias, S.S., Ismail, A.B., Mohamad, A.A. (2010). Effect of pH on ZnO Nanoparticle Properties Synthesized by Sol-Gel Centrifugation. J. Alloys Compd., 499: 231–237.
  31. Barreto, G., Morales, G., Cañizo, A., Eyler, N. (2015). Microwave Assisted Synthesis of ZnO Tridimensional Nanostructures. Procedia Mater. Sci., 8: 535–540.