Microwave-assisted Synthesis of ZnO Nanoparticles Stabilized with Gum Arabic: Effect of Microwave Irradiation Time on ZnO Nanoparticles Size and Morphology

Norlin Pauzi  -  Faculty Chemical and Natural Resources Engineering, University Malaysia Pahang, Malaysia
*Norashikin Mat Zain  -  Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pa, Malaysia
Nurul Amira Ahmad Yusof  -  Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pa, Malaysia
Received: 1 Oct 2018; Revised: 22 Nov 2018; Accepted: 12 Dec 2018; Published: 15 Apr 2019; Available online: 25 Jan 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

The conventional heating methods of nanoparticle synthesis regularly depend on the energy inputs from outer heat sources that resulted high energy intake and low reaction competences. In this paper ZnO nanoparticles stabilized with gum arabic are synthesized using precipitating method assisted by simple and cost effective microwave heating technique. The objective of this work is to investigate the effect of microwave irradiation time towards ZnO nanoparticles morphology and size. The effect of microwave irradiation time has been investigated at 2, 4, 6, and 10 minutes. Dynamic Light Scattering (DLS) was employed to measure the size of ZnO nanoparticles. Ultraviolet–Visible spectroscopy (UV-vis), Fourier-Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD) were used for the characterization of the ZnO nanoparticles. UV-vis absorption spectrum was found in the range of 350 nm indicating the absorption peak of ZnO nanoparticles. FTIR spectra showed peaks range from 424 to 475 cm1 which indicating standard of Zn–O stretching. The presence of (100), (002), and (101) planes were apparent in the XRD result, indicating the crystalline phase of ZnO nanoparticles. The increase in the microwave irradiation time affected the processes of nucleation and crystal growth promoted larger ZnO nanoparticles size. Microwave irradiation time at 2 minutes was selected as the best microwave irradiation time for smallest ZnO nanoparticles averaging about 168 nm sizes based on DLS analysis. Copyright © 2019 BCREC Group. All rights reserved

 

Keywords: Microwave Heating; Irradiation Time; ZnO Nanoparticle; Gum Arabic
Funding: Grant number RDU 150333 of University Malaysia Pahang (UMP) and Mybrain15 scholarship under Ministry of Higher Education Malaysia

Article Metrics:

  1. Naveed Ul Haq, A., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M., Khan, I. (2017). Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity. J. Nanomater., 2017: 1-14 (Article ID 8510342)
  2. Sathya, M., Pushpanathan, K. (2018). Synthesis and Optical Properties of Pb Doped ZnO Nanoparticles. Appl. Surf. Sci., 449: 346–357
  3. Ouhaibi, A., Ghamnia, M., Dahamni, M.A., Heresanu, V., Fauquet, C., Tonneau, D. (2018). The Effect of Strontium Doping on Structural and Morphological Properties of ZnO Nanofilms Synthesized by Ultrasonic Spray Pyrolysis Method. J. Sci. Adv. Mater. Devices, 3: 29–36
  4. Kumaresan, N., Ramamurthi, K., Ramesh Babu, R., Sethuraman, K., Moorthy Babu, S. (2017). Hydrothermally Grown ZnO Nanoparticles for Effective Photocatalytic Activity. Appl. Surf. Sci., 418: 138–146
  5. Irshad, K., Khan, M.T., Murtaza, A. (2018). Synthesis and Characterization of Transition-Metals-Doped ZnO Nanoparticles by Sol-Gel Auto-Combustion Method. Phys. B Condens. Matter, 543: 1–6
  6. Unalan, H.E., Hiralal, P., Rupesinghe, N., Dalal, S., Milne, W.I., Amaratunga, G.A.J. (2008). Rapid Synthesis of Aligned Zinc Oxide Nanowires. Nanotechnology, 19(25): 5608–5612
  7. Gray, R.J., Jaafar, A.H., Verrelli, E., Kemp, N.T. (2018). Method to Reduce the Formation of Crystallites in ZnO Nanorod Thin-Films Grown via Ultra-Fast Microwave Heating. Thin Solid Films, 662: 116-122
  8. Abdelkader, R., Mohammed, B. (2016). Green Synthesis of Cationic Polyacrylamide Composite Catalyzed by An Ecologically Catalyst Clay Called Maghnite-H+ (Algerian MMT) Under Microwave Irradiation. Bull. Chem. React. Eng. Catal., 11(2): 170-175
  9. Pauzi, N., Zain, N.M., Yusof, N.A.A. (2018). The Potential of Gallic Acid and Ascorbic Acid as Green Reducing Agent in ZnO Nanoparticle Synthesis. Malaysian J. Catal., 3: 13–16
  10. Wojnarowicz, J., Chudoba, T., Gierlotka, S., Lojkowski, W. (2018). Effect of Microwave Radiation Power on the Size of Aggregates of ZnO NPs Prepared Using Microwave Solvothermal Synthesis. Nanomaterials, 8(5): 343–359
  11. Gaba, M., Dhingra, N. (2011). Microwave Chemistry: General Features and Applications. Indian J. Pharm. Educ. Res., 45: 175–183
  12. Breitwieser, D., Moghaddam, M.M., Spirk, S., Baghbanzadeh, M., Pivec, T., Fasl, H., Ribitsch, V., Kappe, C.O. (2013). In Situ Preparation of Silver Nanocomposites on Cellulosic Fibers-Microwave vs. Conventional Heating. Carbohydr. Polym., 94: 677–686
  13. Motshekga, S.C., Pillai, S.K., Sinha Ray, S., Jalama, K., Krause, R.W.M. (2012). Recent Trends in the Microwave-Assisted Synthesis of Metal Oxide Nanoparticles Supported on Carbon Nanotubes and Their Applications. J. Nanomater., 2012: 1-15. (Article ID 691503)
  14. Renard, D., Garnier, C., Lapp, A., Schmitt, C., Sanchez, C. (2012). Structure of Arabinogalactan-Protein from Acacia Gum: From Porous Ellipsoids to Supramolecular Architectures. Carbohydr. Polym., 90: 322–332
  15. Sabyasachi Maiti, Sougata Jana, B.L. (2018). Cationic Polyelectrolyte–biopolymer Complex Hydrogel Particles for Drug Delivery. Des. Dev. New Nanocarriers, 223–256
  16. Barik, P., Bhattacharjee, A., Roy, M. (2015). Preparation , Characterization and Electrical Study of Gum Arabic / ZnO Nanocomposites. Bull. Mater. Sci., 38: 1609–1616
  17. Cho, S., Jung, S.-H., Lee, K.-H. (2008). Morphology-Controlled Growth of ZnO Nanostructures Using Microwave Irradiation: From Basic to Complex Structures. J. Phys. Chem. C, 112: 12769–12776
  18. Barreto, G.P., Morales, G., Quintanilla, M.L.L. (2013). Microwave Assisted Synthesis of ZnO Nanoparticles : Effect of Precursor Reagents , Temperature , Irradiation Time , and Additives on Nano-ZnO Morphology Development. J. Mater., 2013: 1–12
  19. Sulochana, M., Vani, C.S., Devi, D.K., Naidu, N.V.S., Sreedhar, B. (2013). Synthesis and Characterization of Gum Acacia-Stabilized Zinc Oxide Nanoparticles : A Green Approach and Microbial Activity. Am. J. Mater. Sci., 3: 169-177
  20. Liu, M.H., Tseng, Y.H., Greer, H.F., Zhou, W., Mou, C.Y. (2012). Dipole Field Guided Orientated Attachment of Nanocrystals to Twin-Brush ZnO Mesocrystals. Chem. - A Eur. J., 18: 16104-16113
  21. Bhattacharjee, S. (2016). DLS and Zeta Potential - What They Are and What They Are Not? J. Control. Release, 235: 337–351
  22. Chirikov, S.N. (2016). Comparison of Particle Size Measurements of Some Aqueous Suspensions by Laser Polarimetry and Dynamic Light Scattering. J. Phys. Conf. Ser., 747: 012051
  23. Brar, S.K., Verma, M. (2011). Measurement of Nanoparticles by Light-Scattering Techniques. TrAC - Trends Anal. Chem., 30: 4–17
  24. Hasanpoor, M., Aliofkhazraei, M., Delavari, H. (2015). Microwave-Assisted Synthesis of Zinc Oxide Nanoparticles. Procedia Mater. Sci., 11: 320–325
  25. Kazemzadeh, S.M., Vaezi, M.R., Shokuhfar, A. (2011). The Effect of Microwave Irradiation Time on Appearance Properties of Silver Nanoparticles. Trans. Indian Inst. Met., 64: 261–264
  26. Arzenšek, D., Podgornik, R., Kuzman, D. (2010). Dynamic Light Scattering and Application to Proteins in Solutions. In Seminar; University of Ljubljana: Ljubljana, Slovenia, 1–18
  27. Papadaki, D., Foteinis, S., Mhlongo, G.H., Nkosi, S.S., Motaung, D.E., Ray, S.S., Tsoutsos, T., Kiriakidis, G. (2017). Life Cycle Assessment of Facile Microwave-Assisted Zinc Oxide (ZnO) Nanostructures. Sci. Total Environ., 586: 566–575
  28. Manoj, V., Karthika, M., Praveen Kumar, V.S.R., Boomadevi, S., Jeyadheepan, K., Karn, R.K., Balaguru, R.J.B., Pandiyan, S.K. (2014). Synthesis of ZnO Nanoparticles Using Carboxymethyl Cellulose Hydrogel. Asian J. Appl. Sci., 7: 798-803
  29. Kumar, R., Singh, R.K., Singh, D.P., Savu, R., Moshkalev, S.A. (2016). Microwave Heating Time Dependent Synthesis of Various Dimensional Graphene Oxide Supported Hierarchical ZnO Nanostructures and Its Photoluminescence Studies. Mater. Des., 111: 291–300
  30. Alias, S.S., Ismail, A.B., Mohamad, A.A. (2010). Effect of pH on ZnO Nanoparticle Properties Synthesized by Sol-Gel Centrifugation. J. Alloys Compd., 499: 231–237
  31. Barreto, G., Morales, G., Cañizo, A., Eyler, N. (2015). Microwave Assisted Synthesis of ZnO Tridimensional Nanostructures. Procedia Mater. Sci., 8: 535–540

Last update: 2021-05-15 07:59:33

No citation recorded.

Last update: 2021-05-15 07:59:33

  1. Nanoparticles: Mechanism of biosynthesis using plant extracts, bacteria, fungi, and their applications

    Qamar S.U.R.. Journal of Molecular Liquids, 127 , 2021. doi: 10.1016/j.molliq.2021.116040
  2. Hybrid Thermal Treatment Based on Microwaves and Heating Resistance for Composite Materials

    Jimenez C.. International Journal of Thermophysics, 42 (1), 2021. doi: 10.1007/s10765-020-02767-9
  3. Gum arabic as natural stabilizing agent in green synthesis of ZnO nanofluids for antibacterial application

    Pauzi N.. Journal of Environmental Chemical Engineering, 8 (3), 2020. doi: 10.1016/j.jece.2019.103331
  4. Intensifying separation and antifouling performance of PSf membrane incorporated by GO and ZnO nanoparticles for petroleum refinery wastewater treatment

    Kusworo T.D.. Journal of Water Process Engineering, 41 , 2021. doi: 10.1016/j.jwpe.2021.102030
  5. Diverse morphologies of zinc oxide nanoparticles and their electrocatalytic performance in hydrogen production

    Sofianos V.M.. Journal of Energy Chemistry, 56 , 2021. doi: 10.1016/j.jechem.2020.07.051
  6. Antibacterial and Antibiofilm Potential of Mono-dispersed Stable Copper Oxide Nanoparticles-Streptomycin Nano-drug: Implications for Some Potato Plant Bacterial Pathogen Treatment

    El-Batal A.I.. Journal of Cluster Science, 31 (5), 2020. doi: 10.1007/s10876-019-01707-4
  7. Antibacterial and antibiofilm properties of ZnO nanoparticles synthesis using gum arabic as a potential new generation antibacterial agent

    Pauzi N.. Materials Today: Proceedings, 41 , 2020. doi: 10.1016/j.matpr.2020.06.359
  8. A review of microwave synthesis of zinc oxide nanomaterials: Reactants, process parameters and morphoslogies

    Wojnarowicz J.. Nanomaterials, 10 (6), 2020. doi: 10.3390/nano10061086