Department of Chemical Engineering, Universitas Lampung, Indonesia
BibTex Citation Data :
@article{BCREC3078, author = {Joni Agustian and Lilis Hermida}, title = {The Optimised Statistical Model for Enzymatic Hydrolysis of Tapioca by Glucoamylase Immobilised on Mesostructured Cellular Foam Silica}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {14}, number = {2}, year = {2019}, keywords = {Enzymatic Hydrolysis; Glucoamylase Immobilisation; Mesostructured Cellular Foam Silica; Tapioca; Central Composite Design}, abstract = { Enzymatic hydrolysis of starches using free glucoamylase to reducing sugars have difficulties in recovering and recycling of the enzyme, hence immobilisation on inert supports were widely studied. However, effectiveness of the immobilised glucoamylase were merely observed only on soluble starches. It was considered a valuable thing to know performance of glucoamylase on Mesostructured Cellular Foam (MCF) silica in hydrolysing of tapioca. An optimised study on enzymatic hydrolysis of tapioca using glucoamylase on MCF silica (9.2T-3D) and its kinetics were described including justification of the predicted model as it was required to develop in large scale operations. Central Composite Design was used to model the process by studying effects of three factors on DE values after enzyme immobilisation. Immobilisation of glucoamylase on this support gave up to 82% efficiency with the specific activity of 1,856.78 U.g -1 . Its used to hydrolysis of tapioca resulted DE values of 1.740-76.303% (w/w) where the highest DE was obtained at pH of 4.1, temperature of 70 ℃ and agitation speed of 140 rpm. The optimisation produced a polynomial quadratic model having insignificant lack-of-fit and low standard deviation, so that it was applicable and reliable in simulating the DE with only 0.80% of data were not described. Temperature affected the process highly, but the buffer pH, agitation speed and factorial interactions were considered not important. K M value for immobilised enzyme was better than the free glucoamylase, however, its reaction rate was slower than the free glucoamylase catalysis. Copyright © 2019 BCREC Group. All rights reserved }, issn = {1978-2993}, pages = {380--390} doi = {10.9767/bcrec.14.2.3078.380-390}, url = {https://ejournal2.undip.ac.id/index.php/bcrec/article/view/3078} }
Refworks Citation Data :
Enzymatic hydrolysis of starches using free glucoamylase to reducing sugars have difficulties in recovering and recycling of the enzyme, hence immobilisation on inert supports were widely studied. However, effectiveness of the immobilised glucoamylase were merely observed only on soluble starches. It was considered a valuable thing to know performance of glucoamylase on Mesostructured Cellular Foam (MCF) silica in hydrolysing of tapioca. An optimised study on enzymatic hydrolysis of tapioca using glucoamylase on MCF silica (9.2T-3D) and its kinetics were described including justification of the predicted model as it was required to develop in large scale operations. Central Composite Design was used to model the process by studying effects of three factors on DE values after enzyme immobilisation. Immobilisation of glucoamylase on this support gave up to 82% efficiency with the specific activity of 1,856.78 U.g-1. Its used to hydrolysis of tapioca resulted DE values of 1.740-76.303% (w/w) where the highest DE was obtained at pH of 4.1, temperature of 70 ℃ and agitation speed of 140 rpm. The optimisation produced a polynomial quadratic model having insignificant lack-of-fit and low standard deviation, so that it was applicable and reliable in simulating the DE with only 0.80% of data were not described. Temperature affected the process highly, but the buffer pH, agitation speed and factorial interactions were considered not important. KM value for immobilised enzyme was better than the free glucoamylase, however, its reaction rate was slower than the free glucoamylase catalysis. Copyright © 2019 BCREC Group. All rights reserved
Article Metrics:
Last update:
In order for BCREC Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)