Green Synthesis of [EMIm]Ac Ionic Liquid for Plasticizing MC-based Biopolymer Electrolyte Membranes

Sun Theo Constan Lotebulo Ndruru -  Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
Deana Wahyuningrum -  Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
Bunbun Bundjali -  Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
*I Made Arcana -  Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
Received: 13 Aug 2018; Revised: 14 Jan 2019; Accepted: 1 Feb 2019; Published: 1 Aug 2019; Available online: 30 Apr 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image

Lithium-ion batteries (LIBs) are favorable power source devices at the last two decades, owing to high energy density, rechargeable, long life cycle, portable, safe, rechargeable, good performance and friendly environment. To support their development, in this research has been successfully prepared polymer electrolyte membrane, a main component of LIBs, based on 1-ethyl-3-methylimidazolium acetate ([EMIm]Ac) ionic liquid-plasticized methyl cellulose/lithium perchlorate (MC/LiClO4). [EMIm]Ac ionic  liquid was easy synthesized by metathesis reaction between 1-ethyl-3-methylimidazolium bromide ([EMIm]Br) ionic liquid and potassium acetate (CH3COOK) at ambient temperature, for 1 hour. [EMIm]Ac ionic liquid was functional groups analyzed with Fourier Transform Infra-red (FT-IR) and structural analyzed with 1H-Nuclear Magnetic Resonance (NMR) and 13C-NMR. [EMIm]Ac ionic liquid-plasticized MC/LiClO4 biopolymer electrolyte membrane was prepared by casting solution, with [EMIm]Ac ionic liquid content, 0, 5, 10, 15, 20, 25, and 30% (w/w). Effect of 15% (w/w) [EMIm]Ac ionic liquid incorporation to MC/LiClO4 showed the best condition and selected as the optimum condition with conductivity, tensile strength, elongation break, and thermal stability of 9.160×10-3, 24.19 MPa, 36.43%, ~256 and ~370 ºC, respectively. These results confirm that [EMIm]Ac ionic liquid can plasticize biopolymer electrolyte membranes of MC/LiClO4 to be appealing performances to fulfill the LIB’s separator requirement. Copyright © 2019 BCREC Group. All rights reserved


[EMIm]Ac; Ionic Liquids; Cellulose; Methyl cellulose; Lithium Ion Batteries

Article Metrics:

  1. Bolloli, M., Antonelli, C., Molmeret, Y., Alloin, F., Iojoiu, C., Sanchez, J. (2016). Nanocompostie poly(vynilidine fluoride) / nanocrystalline cellulose porous membranes as separators for lithium-ion batteries. Electrochemica Acta, 214: 38-48.
  2. Li, M., Wang, X., Yang, Y., Chang, Z., Wu, Y., Holze, R. (2015). A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. Journal of Membrane Science, 476: 112-118.
  3. Polu, A., Rhee, H. (2017). Ionic liquid doped PEO-based solid polymer electrolytes for Lithium-ion polymer batteries. Int. J. Hydrogen Energy, 42: 7212-7219.
  4. Cheng, D., Yang, X., He, Z., Ni, Y. (2016). Potential of cellulose-based materials for lithium-ion batteries (LIB) separator membranes. Journal of Bioresources and Bioproducts, 1(1): 18-21.
  5. Mindemark, J., Sun, B., Torma, E., Brandell, D. (2015). High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. Journal of Power Sources, 298: 166-170.
  6. Xiao, S. Y., Yang, Y. Q., Li, M. X., Wang, F. X., Chang, Z., Wu, Y. P., Liu, X. (2014). A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries. Journal of Power Sources, 270: 53-58.
  7. Jabbour, L., Bongiovanni, R., Chaussy, D., Gerbaldi, C., Beneventi, D. (2013). Cellulose-based Li-ion batteries: a review. Cellulose, 20: 1523-1545.
  8. Bruce, P. (1995). Structure and electrochemistry of Polymer Electrolytes. Electrochemica Acta, 40: 2077-2086.
  9. Bergman, R., Brodin, A., Engberg, D., Lu, Q., Angell, A., Torell, L. (1995). Fast and slow relaxation processes in polymer electrolytes. Electrochemica Acta, 40: 2049-2055.
  10. Liew, C., Ramesh, S. (2015). Electrical, structural, thermal and electrochemical properties of corn strarch-based biopolymer electrolytes. Carbohydrate Polymers, 124: 222-228.
  11. Liang, B., Jiang, Q., Tang, S., Li, S., Chen, X. (2015). Porous polymer electrolytes with high ionic conductivity and good mechanichal property for rechargeable batteries. Journal of Power Sources, 307: 320-32.
  12. Doyle, R., Chen, X., Macrae, M., Srungavarapu, A., Smith, L., Gopinadhan, M. O., Focil, S. (2014). Poly(ethylenimine-based polymer blends as single-ion lithium conductor. Macromolecules, 47: 3401-3408.
  13. Kumar, Y., Hashmi, S., Pandey, G. (2011). Lithium ion transport and ion-polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid. Solid State Ionics, 201: 73-80.
  14. Xiong, M., Tang, H., Wang, Y., Pan, M. (2014). Ethylcellulose-coated polyolefin separators for lithium-ion batteries with improved safety performance. Carbohydrate Polymers, 101: 1140-1146.
  15. Qiu, L., Shao, Z., Wang, D., Wang, F., Wang, W., Wang, J. (2014). Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries. Carbohydrate Polymers, 112: 532-538.
  16. Samsudin, A., Kuan, E., Isa, M. (2011). Investigation of the potential of proton-conducting biopolymer electrolytes based methyl cellulose-gycolic acid. International Journal of Polymer Analysis and Characterization 16(7): 477-485.
  17. Saha, N., Sarkar, G., Roy, I., Rana, D., Bhattacharyya, A., Mukhopadhyay, A., Chattopadhyay, D. (2016). Studies on methylcellulose/pectin/montmorillonite nanocomposite films and their application possibilities. Carbohydrate Polymers, 136: 1218-1227.
  18. Pandian, S., Raju, S., Hariharan, K., Kolake, S., Park, D., Lee, M. (2015). Fuctionalized ionic liquids as electrolytes for lithium-ion batteries. Journal of Power Sources, 286: 204-209.
  19. Yuen, X., Cheng, G. (2015). From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids. Phys. Chem. Chem. Phys., 17: 31592-31607.
  20. Isik, M., Sardon, H., Mecerreyes, D. (2014). Ionic liquids and cellulose: Dissolution, chemical modification and preparation of new cellosic materials. International Journal Molecular Sciences. 15: 11922-11940.
  21. Lewandowski, A., Mocek, A. (2009). Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies. Journal of Power Sources, 194: 601-609.
  22. Pagot, G., Bertasi, F., Vezzu, K., Nawn, G., Pace, G., Nale, A., Noto, V. (2018). Correlation between properties dan conductivity mechanism in Poly(vinyl alcohol)-based lithium solid electrolytes. Solid State Ionics, 320: 177-185.
  23. Wasserscheid, P., Welton, T. (2002). Ionic Liquids in Synthesis. Wiley-VCH.
  24. Rana, K., Rana, S. (2014). Microwave Reactors: A Brief Review on Its Fundamental Aspect and Applications. Open Access Library Journal, 1: 1-20.
  25. Asikkala, J. (2008). Application of Ionic Liquids and microwave activation in selected organic reaction. PhD Dissertation. Department of Chemistry, University of Helsinki.
  26. Ratti, R. (2014). Ionic liquids: Synthesis and Applications in catalysis. Advances in Chemistry, 2014: 1-16.
  27. Surati, M., Jauhari, S., Desai, K. (2012). A brief review: Microwave assited organic reaction. Archives of Applied Science Research, 4: 645-661.
  28. Ohtsuki, J., Matsumoto, K., Hagiwara, R. (2009). Physical and Electrochemical Properties of 1-ethyl-3-methylimidazolium Ionic Liquids of Mixed Anions, (FH)nF- , BF4- , and N(SO2CF3)2-. Electrochemistry, 8: 624-626.
  29. Chaurasia, S., Singh, R., Chandra, S. (2011). Dielectric relaxation and conductivity studies on (PEO:LIClO4) Polymer Electrolyte with Added Ionic Liquid [BMIM][PF6]: Evidence of Ion-ion Interaction. Polymer Physics, 49: 291-300.
  30. Farran, A., Cai, C., Sandoval, M., Xu, Y., Liu, J., Hernaiz, M., Linhardt, R. (2015). Green solvents in carbohydrate chemistry: From raw materials to fine chemicals. Chemical Reviews, 115(14): 6811-6853.
  31. Brandt, A., Grasvik, J., Hallett, J., Welton. (2013). Desconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry, 20: 550-583.
  32. Rani, M., Rudhziah, S., Ahmad, A., Mohamed, N. (2014). Biopolymer electrolyte based on derivatives of cellulose from kenaf bast fiber. Polymers, 6: 2371-2385.
  33. Mobarak, N., Jumaah, F., Ghani, M., Abdullah, M., Ahmad, A. (2015). Carboxymethyl carageenan based biopolymer electrolytes. Electrochemica Acta, 175: 224-231.
  34. Orasugh, J., Saha, N., Sarkar, G., Rana, D., Mishra, R., Mondal, D., Chattopadhyay, D. (2018). Synthesis of methylcellulose/cellulose nano-crystals nanocomposites: Material properties and study of sustained release of ketorolac tromethamine. Carbohydrate Polymer, 188: 168-180.
  35. Quiroz, M., Lecot, J., Bertola, N., Pinotti, A. (2013). Stability of methylcellulose-based films after being subjected to different conservation and processing temperatures. Materials Science and Engineering C, 33: 2918-2925.