skip to main content

Cyclohexanone Oxidation over H3PMo12O40 Heteropolyacid via Two Activation Modes Microwave Irradiation and Conventional Method

1Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32, El-Alia, 16111 Bab-Ezzouar, Alger, Algeria

2Département de Chimie, Faculté des Sciences, Université Mouloud Mammeri (UMMTO), 15000 Tizi Ouzou, Algeria

3ILV-UMR 8180 CNRS, Université de Versailles-St Quent -en-Yvelines, Bâtiment Lavoisier, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France

Received: 7 Aug 2018; Revised: 10 Mar 2019; Accepted: 10 Mar 2019; Available online: 30 Apr 2019; Published: 1 Aug 2019.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2019 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The adipic acid (AA), important precursor for Nylon production, was synthesized from cyclohexanoneoxidation by two ways, microwaves irradiation and  conventional method (under reflux) using H3PMo12O40 heteropolyacid as catalyst in the presence of hydrogen peroxide. In the order to increase the AA yield, several parameters as cyclohexanone/catalyst ratio, H2O2 concentration, solvent nature (H2O, CH3CO2H, and CH3OH, CHCl3 and CH3CN) and cyclohexanol addition to cyclohexanone were examined.  For both activation modes, the highest AA yields are of 26-28%. Whereas, with microwaves irradiation, the time gain is much more attractive 30 min compared to 20 h. 

Fulltext View|Download
Keywords: H3PMo12O40 heteropolyacid; Oxidation; Hydrogen peroxide; Cyclohexanone; Adipic acid; Microwave irradiation

Article Metrics:

  1. Van de Vyver, S., Román-Leshkov, Y. (2013). Emerging catalytic processes for the production of adipic acid. Catal. Sci. Technol., 3: 1465-1479
  2. Castellan, A., Bart, J.C.J., Cavallaro, S. (1991). Synthesis of adipic acid via the nitric acid oxidation of cyclohexanol in a two-step batch process. Catal. Today, 9: 285-299
  3. Castellan, A., Bart, J.C.J., Cavallaro, S. (1991).Nitric acid reaction of cyclohexanol to adipic acid. Catal. Today, 9: 255-283
  4. Kapteijn, F., Rodriguez-Mirasol, J.,Moulijn, J.A. (1996). Heterogeneous catalytic decomposition of nitrous oxide. Appl. Catal. B: Env., 9: 25-64
  5. Pérez-Ramııre, J., Kapteijn, F., Schöffel, K., Moulijn, J.A. (2003). Formation and control of N2O in nitric acid production: Where do we stand today? Appl. Catal. B: Env., 44: 117-151
  6. Jin, P., Zhao, Z., Dai, Z., Wei, D., Tang, M., Wang, X. (2011).Influence of reaction conditions on product distribution in the green oxidation of cyclohexene to adipic acid with hydrogen peroxide. Catal. Today, 175: 619-624
  7. Shang, M., Noël, T., ang, Q., Su, Y., Miyabayashi, K., Hasebe, V.H.S. (2015). 2- and 3-Stage temperature ramping for the direct synthesis of adipic acid in micro-flow packed-bed reactors. Chem. Eng. 260: 454-462
  8. Kholdeeva, O.A., Maksimchuk, N.V., Maksimov, G.M. (2010). Polyoxometalate-based heterogeneous catalysts for liquid phase selective oxidations: Comparison of different strategies. Catal. Today, 157: 107-113
  9. Ishii, Y., Yamawaki, K., Ura, T., Yamada, H., Yoshida, T.,Ogawa, M. (1988).Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpyridinium chloride. Epoxidation of olefins and allylic alcohols, ketonization of alcohols and diols, and oxidative cleavage of 1,2-diols and olefins. J. Org. Chem., 53: 3587-3593
  10. Zhang, S.J., Zhao, G.D., Gao, S., Xi, Z.W., Xu, J. (2008). Secondary alcohols oxidation with hydrogen peroxide catalyzed by [n-C16H33N(CH3)3]3PW12O40: Transform-and-retransform process between catalytic precursor and catalytic activity species. J. Mol. Catal. A: Chem., 289: 22-27
  11. Tundo, P., Romanelli, G.P., Vázquez, P.G., Aricò, F. (2010). Multiphase oxidation of alcohols and sulfides with hydrogen peroxide catalyzedby heteropolyacids. Catal. Commun., 11: 1181- 1184
  12. Zhang, F.M., Guo, M.P., Ge, H.Q., Wang, J. (2007). Hydroxylation of Benzene with Hydrogen Peroxide over Highly Efficient Molybdovanadophosphoric Heteropoly Acid Catalysts. Chin. J. Chem. Eng., 15: 895- 898
  13. Zhao, P.P., Wang, J., Chen, G.J., Zhou, Y., Huang, J. (2013). Phase transfer hydroxylation of benzene with H2O2 catalyzed by a nitrile-functionalized pyridinium phosphovanadomolybdate. Catal. Sci. Technol., 3: 1394-1404
  14. Mazari, T., Benadji, S., Tahar, A., Dermeche, L., Rabia, C. (2013). Liquid phase synthesis of adipic acid using Keggin-type phosphomolybdates catalysts. Mat. Sci. Eng.: B, 3: 146-152
  15. Tahar, A., Benadji, S., Mazari, T., Dermeche, L., Marchal-Roch, C., Rabia, C. (2015). Preparation, characterization and reactivity of keggin type phosphomolybdates, H3−2xNixPMo12O40 and (NH4)3−2xNixPMo12O40, for adipic acid synthesis. Catal. Lett., 145: 569-575
  16. Moudjahed, M., Dermeche, L., Benadji, S., Mazari, T., Rabia, C. (2015). Dawson-type polyoxometalates as green catalysts for adipic acidsynthesis. Mol. Catal. A: Chem., 414: 72-77
  17. Chavan, S.A., Srinivas, D., Ratnasamy, P. (2002). Oxidation of cyclohexane, cyclohexanone, and cyclohexanol to adipic acid by a non-HNO3 route over Co/Mn cluster complexes. J. Catal. 212: 39-45
  18. Rocchiccioli-Deltcheff, C., Fournier, M., Franck, R., Thouvenot, R. (1984). Vibrational investigations of polyxometalates. 4. valence force fields of anions related to the lindqvist structure. J. Mol. Struct., 114: 49-56
  19. D'amour, H., Allmann, R. (1976). Ein Kegginkomplex mit erniedrigter Pseudosymmetrie in der struktur des H3[PMo12O40] · (13-14)H2O. Kristallogr. Cryst. Mater.,143 (1-6)
  20. Mazari, T., Roch-Marchal, C., Hocine, S., Salhi, N., Rabia, C. (2010). Oxidation of propane over ammonium-transition metal mixed Keggin phosphomolybdate salts. J. Nat. Gas Chem., 19: 54-60
  21. Cavani, F., Etienne, E., Mezzogori, R., Pigamo, A., Trifirò, F. (2001). Improvement of catalytic performance in isobutane oxidation to methacrylic acid of Keggin-type phosphomolybdates by preparation via lacunary precursors: nature of the active sites. Catal. Lett., 75: 99-105
  22. Benadji, S., Mazari, T., Dermeche, L., Salhi, N., Cadot, E., Rabia, C. (2013). Clean alternative for adipic acid synthesis via liquid-phase oxidation of cyclohexanone and cyclohexanol over H3−2xCoxPMo12O40 catalysts with hydrogen peroxide. Catal. Lett., 143: 749-755
  23. Mouheb, L.,Dermeche, L., Mazari, T., Benadji, S., Essayem, N., Rabia, C. (2018). Clean adipic acid synthesis from liquid-phase oxidation of cyclohexanone and cyclohexanol using (NH4)xAyPMo12O40(A: Sb, Sn, Bi) mixed heteropolysalts and hydrogen peroxide in free solvent. Catal. Lett., 148: 612–620
  24. Mouanni, S., Mazari, T., Benadji, S., Dermeche, L., Marchal-Roch, C., Rabia, C. (2018). Simple and green adipic acid synthesis from cyclohexanone and/or cyclohexanol oxidation with efficient (NH4)xHyMzPMo12O40 (M: Fe, Co, Ni) catalysts. Bull. Chem. React. Eng. Catal. 13: 386-392
  25. Salles, L., Aubry, C., Thouvenot, R., Robert, F., Doremieux-Morin, C., Chottard, G., Ledon, H., Jeanin, Y., Bregault, P. (1994). 31P and 183W NMR spectroscopic evidence for novel peroxo species in the "H3[PW12O40].cntdot.yH2O/H2O2" system. synthesis and x-ray structure of tetrabutylammonium (mu.-hydrogen phosphato) bis (.mu.-peroxo)bis (oxoperoxotungstate) (2-): a catalyst of olefin epoxidation in a biphase medium. J. Inorg. Chem., 33: 871-878
  26. Ducan, D.C., Chambers, C., Hecht, E., Hill, C.L. (1995). Mechanism and dynamics in the H3[PW12O40]-catalyzed selective epoxidation of terminal olefins by H2O2. formation, reactivity, and stability of {PO4[WO(O2)2]4}3-. J. Am. Chem. Soc.,117: 681-691
  27. Kuznetsova, L.I., Kuznetsova, N.I., Maksimovskaya, R.I., Aleshina, G.I., Koscheeva, O.S., Utkin, U.V. (2011). Epoxidation of butadiene with hydrogen peroxide catalyzed by the salts of phosphotungstate anions: relation between catalytic activity and composition of intermediate peroxo complexe. Catal. Lett., 141: 1442-1450
  28. Mengs, L.Y., Zhai, S.R., Sun, Z.C., Zhang, F.Z., Xiao, Y., An, Q.D. (2015).Green and efficient synthesis of adipic acid from cyclohexene over recyclable H3PW4O24/PEHA/ZrSBA-15 with platelet morphology. Micro. Meso. Mat., 204: 123-130
  29. Amitouche, D., Haouas, M., Mazari, T., Mouanni, S., Canioni, R., Rabia, C., Cadot, E., Marchal-Roch, C. (2018). The primary stages of polyoxomolybdate catalyzed cyclohexanone oxidation by hydrogen peroxide as investigated by in situ NMR. Substrate activation and evolution of the working catalyst. Appl. Catal. A Gen. 561: 104-116
  30. Zhang, S., Zhao, G., Gao, S., Xi, Z., Xu, J. (2008). Secondary alcohols oxidation with hydrogen peroxide catalyzed by [n-C16H33N(CH3)3]3PW12O40: Transform-and-retransform process between catalytic precursor and catalytic activity species. J. Mol. Catal. A: Chem., 289: 22–27
  31. Luisa-Ramos, M., Justinoa, L.L.G., Burrowsa, H.D. (2011). Structural considerations and reactivity of peroxocomplexes of V(V), Mo(VI) and W(VI). Dalton Transactions. 40: 4374- 4383
  32. Bortolini, O., Conte, V. (2005). Vanadium (V) peroxocomplexes: Structure, chemistry and biological implications. J. Inorg. Biochem. 99: 1549-1557
  33. Kamata, K., Kuzuya, S., Uehara, K., Yamaguchi, S., Mizuno, N. (2007). μ-η1:η1-Peroxo-Bridged Dinuclear Peroxotungstate Catalytically Active for Epoxidation of Olefins. J. Inorg. Chem., 46: 3768-3774
  34. Barrio, L., Campos-Martin, J.M., Fierro, J.L.G. (2007). Spectroscopic and DFT study of tungstic acid peroxocomplexes. J. Phys. Chem. A 111: 2166-2171
  35. Taube, F., Andersson, I., Toth, I., Bodor, A., Howarth, O., Pettersson, L. (2002). Equilibria and dynamics of some aqueous peroxomolybdate catalysts: a 17O NMR spectroscopic study. Chem. Soc. Dalton. Trans., 4451-4456
  36. Vafaeezadeh, M., Hashemi, M.M. (2014). Simple and green oxidation of cyclohexene to adipic acid with an efficient and durable silica-functionalized ammonium tungstate catalyst. Catal. Commun., 43: 169-172

Last update:

No citation recorded.

Last update:

No citation recorded.