Direct Synthesis of Sodalite from Indonesian Kaolin for Adsorption of Pb2+ Solution, Kinetics, and Isotherm Approach

Tri Wahyuni -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember , Surabaya, Indonesia
*Didik Prasetyoko -  Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember , Surabaya, 60111, Indonesia
Suprapto Suprapto -  Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember , Surabaya, Indonesia
Imroatul Qoniah -  Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember , Surabaya, Indonesia
Hasliza Bahruji -  Centre of Advanced Material and Energy Sciences, University Brunei Darussalam, Brunei Darussalam
Ahmad Anwarud Dawam -  Department of Chemistry, Faculty Science, Institut Teknologi Sepuluh Nopember , Surabaya, Indonesia
Sugeng Triwahyono -  Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Malaysia
Aishah Abdul Jalil -  Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Malaysia
Received: 17 Jul 2018; Revised: 21 Mar 2019; Accepted: 23 Mar 2019; Published: 1 Dec 2019; Available online: 30 Sep 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Article Info
Section: Original Research Articles
Language: EN
Full Text:
Statistics: 176 44
Abstract

Indonesian kaolin was used as precursor for synthesis of sodalite. Synthesis parameters were optimized by varying the Si/Al ratios, stirring and aging conditions, and water composition. X-ray diffraction (XRD), Fourier Transform Infra Red (FTIR), Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX), and Particle Size Analyzer (PSA) were used to characterize sodalite. The potential of sodalite as adsorbent for heavy metal Pb2+ ions removal from waste water was investigated in this work. The uptake adsorption capacities of sodalite was 90-100 mg/g from synthesized sodalite crystallized for 24 and 48 hours, and commercial silica. The kinetic of Pb2+ adsorption was a pseudo second order reaction and the adsorption coefficients was followed Langmuir adsorption isotherm. Copyright © 2019 BCREC Group. All rights reserved

Keywords
Sodalite, Kaolin, kinetics, Pb2+ adsorption, Isotherm

Article Metrics:

  1. Gupta, V.K., Ali, I. (2004). Removal of Lead and Chromium from Wastewater using Bagasse Fly-Ash-a Sugar Industry Waste. Journal of Colloidal Interface Science, 271: 321-328.
  2. Pearce, J.M.S. (2007). Burton’s Line in Lead Poisoning. Europion Neurology, 57: 118-119.
  3. Barakat, M.A. (2011). New Trends In Removing Heavy Metals From Industrial Wastewater. Arabian Journal of Chemistry, 4: 361-377
  4. Kurniawan, T.A., Chan, G.Y.S., Lo, W.Y., Babel, S. (2006). Physicochemical Treatment For Wastewater Laden with Heavy Metal. Chemical Engineering Journal, 118: 83-98.
  5. Albanis, T. (2009). Pollution and Environmental Protection Technologies. Tzillas Publications, Greek, ISBN 978-960-418-206-0.
  6. Charerntanyarak, L. (1999). Heavy Metals Removal by Chemical Coagulation and Precipitation. Water Science Technology, 39(10-11): 135-138.
  7. Mobasherpour, I., Salahi, E., Pazouki, M. (2016). Comparative of The Removal of Pb2+, Cd2+, and Ni2+ by Nano Crystallite Hydroxyapatite from Aqueous Solutions : Adsorption Isotherm Study. Arabian Journal of Chemistry, 5: 439-446.
  8. Sreejalekshmi, K.G., Krishnan, K.A., Anirudhan, T.S. (2009). Adsorption of Pb(II) and Pb(II)-Citric Acid on Sawdust Activated Carbon. Journal Hazard Material, 161: 1506-1513.
  9. Visa, M. (2016). Synthesis and Characterization of New Zeolite Materials Obtained from Fly Ash for Heavy Metals Removal in Advanced Wastewater Treatment. Powder Technology, 294: 338-347.
  10. Batabyal, D., Sahu, A., Chaudhuri, S.K. (1995). Kinetics and Mechanism of Removal of 2,4-Dimetyl Phenol from Aqueous Solutions with Coal Fly Ash. Separation Technology, 5(4): 179-186.
  11. Petrus, R., Warchol, J.K. (2005). Heavy Metal Removal by Clinoptilolite. An Equilibrium Study Iin Multi-Component System. Water Resources, 39: 819-830.
  12. Jiang, J., Gu, X., Feng, L., Duanmu, C., Jin, Y., Hu, T., Wu, J. (2012). Controllable of Sodalite Submicron Crystal and Microspheres from Palygorskite Clay Using a Two-Step Approach. Powder Technology, 217: 298-303.
  13. Naskar, M.K., Kundu, D., Chatterjee, M. (2011). Coral-like Hydroxyl Sodalite Particle from Rice Husk Ash as Silica Source. Material Letters, 65: 3408-3410.
  14. Yu, H., Shen, J., Li, J., Sun, X., Han, W., Liu, X., Wang, L. (2014). Preparation, Characterization and Adsorption Properties of Sodalite. Material Letters, 132: 259-262.
  15. Ghazemi, Z., Younesi, H., Kazemian, H. (2011). Synthesis of Nano Zeolite Sodalitefrom Rice Husk Ash without Organic Additives. Canadian Journal of Chemical Engineering, 89: 601-608.
  16. Prokof'ev, V. Yu., Gordina, N.E. (2014). Preparation of Granulated and SOD Zeolites from Mechanically Activated Mixtures of Metakaolin and Sodium Hydroxide. Applied Clay Sciences, 101: 44-51.
  17. Qoniah, I., Prasetyoko, D., Bahruji, H., Triwahyono, S., Jalil, A.A., Suprapto, S., Hartati, H., Purbaningtias, T.E. (2015). Direct Synthesis of Mesoporous Aluminosilicates from Indonesian Kaolin Clay without Calcination. Applied Clay Sciences, 118: 290-294.
  18. Alkan, M., Hopa, C., Yilmaz, Z., Güler, H. (2005). The Effect of Alkali Concentration and Solid/Liquid Ratio on The Hydrothermal of Zeolite NaA from Natural Kaolinite. Microporous Mesoporous Material, 86: 176-184.
  19. Hiyoshi, N., (2012). Nanocrystalline sodalite: Preparation and Application of 2-Cyclohexen-1-One with Hydrogen Peroxide, Applied Catalysis A: General, 419-420: 164-169.
  20. Zhang, X., Tong, D., Jia, W., Tang, D., Li, X., Yang, R. (2014). Studies on Room-Temperature of Zeolite NaA. Materials Research Bulletin, 52: 96-102.
  21. Wang, J-Q., Huang, Y-X., Pan, Y., Mi, J-X. (2014). Hydrothermal of High Purity Zeolite A from Natural Kaolin without Calcinations. Microporous Mesoporous Material,199: 50-56.
  22. Li, Q., Mihailova, B., Creaser, D., Sterte, J. (2001). Aging Effect on The Nucleation and Crystallization Kinetics of Colloidal TPA-silicate-1. Microporous Mesoporous Material, 43: 51-59.
  23. Zhang, M.L., Zhang, H.Y., Xu, D., Han, L., Niu, D.X., Tian, B.H., Zhang, J., Zhang, Y., Wu, W.S. (2011). Removal of Ammonium from Aqueos Solutions using Zeolite Synthesized from Fly Ash by A Fusion Method. Desalination, 271: 111-121.
  24. Kocaoba, S., Orhan, Y., Akyuz, T. (2007). Kinetics and Equilibrium Studies of Heavy Metal Ions Removal by Use of Natural Zeolite. Desalination, 214: 1-10.
  25. Rayalu, S.S., Udhoji, J.S., Meshram, S.U., Naidu, R.R., Devota, S. (2005). Estimation of Crystallinity in Fly ash-based Zeolite-A using XRD and IR Spectroscopy. Current Science, 89(12): 2147–2151.