Effect of Incorporating TiO2 Photocatalyst in PVDF Hollow Fibre Membrane for Photo-Assisted Degradation of Methylene Blue

Norashima Abdullah -  Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang , Center of Excellence for Advanced Research in Fluid Flow, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang Malaysia, Malaysia
Bamidele Victor Ayodele -  Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang , Center of Excellence for Advanced Research in Fluid Flow, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang Malaysia, Malaysia
Wan Nurdiyana Wan Mansor -  School of Ocean Engineering, Universiti Malaysia Terengganu , KualaNerus, 21030 Terengganu Malaysia, Malaysia
*Sureena Abdullah -  Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang , Center of Excellence for Advanced Research in Fluid Flow, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang Malaysia, Malaysia
Received: 8 Jul 2018; Published: 4 Dec 2018.
Open Access Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

A rapid growth in populations, living standards and industries has become a key contribution to water pollution. Clean water is an important resource for life, sustainable development and ecosystems. This study therefore investigates the photocatalytic degradation of an organic pollutant (methylene blue) using PVDF/TiO2 membrane. The main objective of the study is to determine the synergistic effect of incorporating TiO2 photocatalyst into the PVDF membrane on the mineralization of the organic pollutants. The TiO2 photocatalyst was characterized using Ultraviolet Visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM), Brunauer, Emmettt, and Teller (BET), and X-ray Diffraction (XRD) techniques. While the fabricated PVDF/TiO2 hollow fibre membranes were then characterized by scanning electron microscopy (SEM) and contact angle. The performance of the membrane was evaluated by photodegradation of methylene blue. The degradation study revealed that both the undoped PVDF and the TIO2 doped PVDF membrane were capable of degrading methylene blue. The performance of the membrane can be ranked as follows 9 wt% TiO2/PVDF > 6 wt% TiO2/PVDF > 3 wt% TiO2/PVDF > undoped PVDF showing the synergistic effect of incorporating the TiO2 photocatalyst into the PVDF membrane.  The kinetics data of obtained from the rate of degradation of the methylene blue fitted well into first order kinetic data with apparent kinetic constants of 0.0591, 0.0295, 0.0188, and 0.0100 obtained using pure membrane, undoped PVDF, 3 wt% TiO2/PVDF, 6 wt% TiO2/PVDF, and 9 wt% TiO2/PVDF, respectively.

Received: 8th July 2018; Revised: 30th July 2018; Accepted: 5th August 2018

How to Cite: Abdullah, N., Ayodelea, B.V., Mansor, W.N.W., Abdullah, S. (2018). Effect of Incorporating TiO2 Photocatalyst in PVDF Hollow Fibre Membrane for Photo-Assisted Degradation of Methylene Blue. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (3): 588-591 (doi:10.9767/bcrec.13.3.2909.588-591)

Permalink/DOI: https://doi.org/10.9767/bcrec.13.3.2909.588-591


Other format:

Water pollution; titanium dioxide; photocatalytic degradation; methylene blue; polyvinylidene fluoride
Cover Image

Article Metrics:

  1. Gaya U.I., Abdullah A.H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem., 9 (1):1-12. doi:10.1016/j.jphotochemrev.2007.12.003.
  2. Ebrahiem E.E., Al-Maghrabi M.N., Mobarki A.R. (2017). Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arab. J. Chem. 10:S1674-S1679. doi:10.1016/j.arabjc. 2013.06.012.
  3. Zangeneh, H., Zinatizadeh, A.A.L., Habibi, M., Akia, M., Hasnain Isa, M. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem. 26:1-36. doi:10.1016/j.jiec. 2014.10.043.
  4. Pi, Y., Li, Z., Xu, D., Liu, J., Li, Y., Zhang, F., Zhang, G., Peng, W., Fan, X. (2017). 1T-Phase MoS2 Nanosheets on TiO2 Nanorod Arrays: 3D Photoanode with Extraordinary Catalytic Performance. ACS Sustain. Chem. Eng., 5(6): 5175-5182. doi:10.1021/acssuschemeng. 7b00518.
  5. Ali, K.A., Abdullah, A.Z., Mohamed, A.R. (2017). Visible light responsive TiO2nanoparticles modified using Ce and La for photocatalytic reduction of CO2: Effect of Ce dopant content. Appl. Catal. A Gen., 537:111–120. doi:10.1016/j.apcata.2017.03.022.
  6. Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: A review. Process. Biochem. 40(3-4): 997-1026. doi:10.1016/j.procbio.2004.04.008.
  7. Oller, I., Malato, S., Sánchez-Pérez, J.A. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review. Sci. Total Environ., 409 (20): 4141-4166. doi:10.1016/j.scitotenv.2010.08.061.
  8. Leong, S., Razmjou, A., Wang, K., Hapgood, K., Zhang, X., Wang, H. (2014). TiO2 based photocatalytic membranes : A review. Journal of Membrane Science, 472: 167-184. doi: 10.1016/j.memsci.2014.08.016.
  9. Hidalgo, M.C., Maicu, M., Navío, J.A., Colón, G. (2007). Photocatalytic properties of surface modified platinised TiO2: Effects of particle size and structural composition. Catal. Today, 129 (1-2):43-49. doi:10.1016/j.cattod. 2007.06.052.
  10. Malato, S., Blanco, J., Alarcon, D.C., Maldonado, M.I., Fernandez-Ibanez, P., Gernjak, W. (2007). Photocatalytic decontamination and disinfection of water with solar collectors. Catal. Today, 122 (1-2): 137-149. doi:10.1016/ j.cattod.2007.01.034.
  11. Moghadam, M.T., Lesage, G., Mohammadi, T., Mericq, J.P., Mendret, J., Heran, M., Faur, C., Brosillon, S., Hemmati, M., Naeimpoor, F. (2015). Improved antifouling properties of TiO2/PVDF nanocomposite membranes in UV-coupled ultrafiltration. J. Appl. Polym. Sci. 132 (21):13-15. doi:10.1002/app.41731.
  12. Ochoa, N.A., Masuelli, M., Marchese, J. (2003). Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes. J. Memb. Sci., 226(1-2): 203-211. doi:10.1016/j.memsci. 2003.09.004.
  13. Lin, Z., Zhao L, Dong Y (2015). Chemosphere Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction. Chemosphere,141:7–12. doi:10.1016/j.chemosphere.2015.05.066.
  14. Gao, B., Liu, L., Liu, J., Yang, F. (2013). Photocatalytic degradation of 2,4,6-tribromophenol over Fe-doped ZnIn2S4: Stable activity and enhanced debromination. Appl. Catal. B Environ., 129: 89-97. doi:10.1016/j.apcatb.2012.09.007.
  15. Lee, H., Choi, J., Lee, S., Yun, S.T., Lee, C., Lee, J. (2013). Kinetic enhancement in photocatalytic oxidation of organic compounds by WO3 in the presence of Fenton-like reagent. Appl. Catal. B Environ., 138-139: 311-317. doi:10.1016/j.apcatb.2013.03.006.
  16. Gao, X., Su, X., Yang, C., Xiao, F., Wang, J., Cao, X., Wang, S., Zhang, L. (2013). Hydrothermal synthesis of WO3 nanoplates as highly sensitive cyclohexene sensor and high-efficiency MB photocatalyst. Sensors Actuators B Chem., 181: 537-543. doi:10.1016/j.snb.2013.02.031.
  17. Huo Y, Xie Z, Wang X, Li H, Hoang M, Caruso R.A (2013). Methyl orange removal by combined visible-light photocatalysis and membrane distillation. Dye Pigment, 98(1):106–12. doi:10.1016/j.dyepig.2013.02.009.
  18. Wang, J., Yu, Y., Zhang, L. (2013). Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light. Appl. Catal. B Environ. 136-137: 112–121. doi:10.1016/j.apcatb.2013.02.009.
  19. Miao, Z., Tao, S., Wang, Y., Yu, Y., Meng, C., An, Y. (2013). Hierarchically porous silica as an efficient catalyst carrier for high performance vis-light assisted Fenton degradation. Microporous Mesoporous Mater., 176: 178-185. doi:10.1016/j.micromeso.2013.04.009.
  20. Zhang, Y., Wang, D., Zhang, G. (2011). Photocatalytic degradation of organic contaminants by TiO2/sepiolite composites prepared at low temperature. Chem. Eng. J., 173(1): 1-10. doi:10.1016/j.cej.2010.11.028.
  21. Gupta, V.K., Pathania, D., Agarwal, S., Singh, P. (2012). Adsorptional photocatalytic degradation of methylene blue onto pectin-CuS nanocomposite under solar light. J. Hazard. Mater., 243: 179-186. doi:10.1016/j.jhazmat. 2012.10.018.
  22. Xiao, X., Hu, R., Liu, C., Xing, C., Zuo, X., Nan, J., Wang, L. (2013). Facile microwave synthesis of novel hierarchical Bi24O31Br10 nanoflakes with excellent visible light photocatalytic performance for the degradation of tetracycline hydrochloride. Chem. Eng. J., 225: 790-797. doi:10.1016/j.cej.2013.03.103.
  23. Lu, S.Y., Wu, D., Wang, Q. L., Yan, J., Buekens, A.G., Cen, K.F. (2011). Photocatalytic decomposition on nano-TiO2: Destruction of chloroaromatic compounds. Chemosphere, 82 (9):1215-1224. doi:10.1016/j.chemosphere. 2010.12.034.
  24. Mahmoodi, N.M., Arami, M., Limaee, N.Y (2006). Photocatalytic degradation of triazinic ring-containing azo dye (Reactive Red 198) by using immobilized TiO2 photoreactor: Bench scale study. J. Hazard. Mater., 133(1-3): 113-118. doi:10.1016/j.jhazmat.2005.09.057.
  25. Mu, R., Xu, Z., Li, L., Shao, Y., Wan, H., Zheng, S. (2010). On the photocatalytic properties of elongated TiO2 nanoparticles for phenol degradation and Cr(VI) reduction. J. Hazard. Mater.,176 (1-3): 495–502. doi:10.1016/ j.jhazmat.2009.11.057.
  26. Yang, S., Gu, J.S., Yu, H.Y., Zhou, J., Li, S.F., Wu, X.M., Wang, L. (2011). Polypropylene membrane surface modification by RAFT grafting polymerization and TiO2 photocatalysts immobilization for phenol decomposition in a photocatalytic membrane reactor. Sep. Purif. Technol. 83: 157-165. doi:10.1016/j.seppur.2011.09.030.
  27. Wang, N., Chu, W., Zhang, T., Zhao, X. (2011). Manganese promoting effects on the Co–Ce–Zr–Ox nano catalysts for methane dry reforming with carbon dioxide to hydrogen and carbon monoxide. Chem. Eng. J., 170(2-3): 457-463. doi:10.1016/j.cej.2010.12.042.
  28. Gupta, V.K. (2009). Application of low-cost adsorbents for dye removal - A review. J. Environ. Manage., 90 (8): 2313-2342. doi:10.1016/j.jenvman.2008.11.017.
  29. Meriläinen, A., Seppälä, A., Kauranen, P. (2012). Minimizing specific energy consumption of oxygen enrichment in polymeric hollow fiber membrane modules. Applied energy, 94: 285–294. doi:10.1016/j.apenergy. 2012.01.069.
  30. Peng, N., Widjojo, N., Sukitpaneenit, P., Teoh, M.M., Lipscomb, G.G., Chung, T.S., Lai, J.Y. (2012). Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future. Prog. Polym. Sci., 37 (10): 1401-1424. doi:10.1016/j.progpolymsci. 2012.01.001.
  31. Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., Batzill, M. (2014). Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films. Scientific Reports, 4: 4043.
  32. Li, X., Xiong, Y., Zou, L., Wang, M., Xie, Y. (2007). Polymer-induced generation of anatase TiO2 hollow nanostructures. Microporous and Mesoporous Materials 112 (1-3): 641–646. doi:10.1016/j.micromeso. 2007.10.034.
  33. Benedix, R., Dehn, F., Quaas, J., Orgass, M. (2000). Application of titanium dioxide photocatalysis to create self-cleaning building materials. Lacer, 3: 157-168.
  34. Damodar, R.A., You, S., Chou, H. (2009). Study the self cleaning , antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. Journal of Hazardous Materials, 172(1-3): 1321-1328. doi:10.1016/j.jhazmat.2009.07.139.
  35. Dzinun, H., Othman, M.H.D., Ismail, A.F., Puteh, M.H., Rahman, M.A., Jaafar, J. (2016). Photocatalytic degradation of nonylphenol using co-extruded dual-layer hollow fibre membranes incorporated with a different ratio of TiO2/PVDF. React. Funct. Polym., 99: 80-87. doi:10.1016/ j.reactfunctpolym.2015.12.011.
  36. Liang, S., Kang, Y., Tiraferri, A., Giannelis, E.P., Huang, X., Elimelech, M. (2013). Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles. ACS Appl. Mater. Interfaces, 5 (14): 6694-6703. doi:10.1021/am401462e.
  37. Akpan, U.G., Hameed, B.H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts : A review. Journal of Hazardous Materials, 170(2-3): 520-529. doi:10.1016/j.jhazmat. 2009.05.039.
  38. Kang, G.D., Cao, Y. (2014). Application and modification of poly(vinylidene fluoride) (PVDF) membranes - A review. J. Memb. Sci., 463:145-165. doi:10.1016/j.memsci. 2014.03.055.
  39. Liu, F., Hashim, N.A., Liu, Y., Abed, M.R.M., Li, K. (2011). Progress in the production and modification of PVDF membranes. J. Memb. Sci., 375(1-2): 1-27. doi:10.1016/j.memsci. 2011.03.014.
  40. Ngang, H.P., Ooi, B.S., Ahmad, A.L., Lai, S.O. (2012). Preparation of PVDF-TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chem. Eng. J., 197: 359-367. doi:10.1016/j.cej.2012.05.050.
  41. Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., Herrmann, J.M. (2001). Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ., 31 (2): 145-157. doi:10.1016/S0926-3373(00)00276-9.
  42. Konstantinou, I.K., Albanis, T.A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ., 49 (1): 1-14. doi:10.1016/j.apcatb.2003.11.010.