Effect of Incorporating TiO2 Photocatalyst in PVDF Hollow Fibre Membrane for Photo-Assisted Degradation of Methylene Blue


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

A rapid growth in populations, living standards and industries has become a key contribution to water pollution. Clean water is an important resource for life, sustainable development and ecosystems. This study therefore investigates the photocatalytic degradation of an organic pollutant (methylene blue) using PVDF/TiO2 membrane. The main objective of the study is to determine the synergistic effect of incorporating TiO2 photocatalyst into the PVDF membrane on the mineralization of the organic pollutants. The TiO2 photocatalyst was characterized using Ultraviolet Visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM), Brunauer, Emmettt, and Teller (BET), and X-ray Diffraction (XRD) techniques. While the fabricated PVDF/TiO2 hollow fibre membranes were then characterized by scanning electron microscopy (SEM) and contact angle. The performance of the membrane was evaluated by photodegradation of methylene blue. The degradation study revealed that both the undoped PVDF and the TIO2 doped PVDF membrane were capable of degrading methylene blue. The performance of the membrane can be ranked as follows 9 wt% TiO2/PVDF > 6 wt% TiO2/PVDF > 3 wt% TiO2/PVDF > undoped PVDF showing the synergistic effect of incorporating the TiO2 photocatalyst into the PVDF membrane. The kinetics data of obtained from the rate of degradation of the methylene blue fitted well into first order kinetic data with apparent kinetic constants of 0.0591, 0.0295, 0.0188, and 0.0100 obtained using pure membrane, undoped PVDF, 3 wt% TiO2/PVDF, 6 wt% TiO2/PVDF, and 9 wt% TiO2/PVDF, respectively.
Received: 8th July 2018; Revised: 30th July 2018; Accepted: 5th August 2018
How to Cite: Abdullah, N., Ayodelea, B.V., Mansor, W.N.W., Abdullah, S. (2018). Effect of Incorporating TiO2 Photocatalyst in PVDF Hollow Fibre Membrane for Photo-Assisted Degradation of Methylene Blue. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (3): 588-591 (doi:10.9767/bcrec.13.3.2909.588-591)
Permalink/DOI: https://doi.org/10.9767/bcrec.13.3.2909.588-591
Article Metrics:
- Gaya U.I., Abdullah A.H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem., 9 (1):1-12. doi:10.1016/j.jphotochemrev.2007.12.003.
- Ebrahiem E.E., Al-Maghrabi M.N., Mobarki A.R. (2017). Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arab. J. Chem. 10:S1674-S1679. doi:10.1016/j.arabjc. 2013.06.012.
- Zangeneh, H., Zinatizadeh, A.A.L., Habibi, M., Akia, M., Hasnain Isa, M. (2015). Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem. 26:1-36. doi:10.1016/j.jiec. 2014.10.043.
- Pi, Y., Li, Z., Xu, D., Liu, J., Li, Y., Zhang, F., Zhang, G., Peng, W., Fan, X. (2017). 1T-Phase MoS2 Nanosheets on TiO2 Nanorod Arrays: 3D Photoanode with Extraordinary Catalytic Performance. ACS Sustain. Chem. Eng., 5(6): 5175-5182. doi:10.1021/acssuschemeng. 7b00518.
- Ali, K.A., Abdullah, A.Z., Mohamed, A.R. (2017). Visible light responsive TiO2nanoparticles modified using Ce and La for photocatalytic reduction of CO2: Effect of Ce dopant content. Appl. Catal. A Gen., 537:111–120. doi:10.1016/j.apcata.2017.03.022.
- Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: A review. Process. Biochem. 40(3-4): 997-1026. doi:10.1016/j.procbio.2004.04.008.
- Oller, I., Malato, S., Sánchez-Pérez, J.A. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review. Sci. Total Environ., 409 (20): 4141-4166. doi:10.1016/j.scitotenv.2010.08.061.
- Leong, S., Razmjou, A., Wang, K., Hapgood, K., Zhang, X., Wang, H. (2014). TiO2 based photocatalytic membranes : A review. Journal of Membrane Science, 472: 167-184. doi: 10.1016/j.memsci.2014.08.016.
- Hidalgo, M.C., Maicu, M., Navío, J.A., Colón, G. (2007). Photocatalytic properties of surface modified platinised TiO2: Effects of particle size and structural composition. Catal. Today, 129 (1-2):43-49. doi:10.1016/j.cattod. 2007.06.052.
- Malato, S., Blanco, J., Alarcon, D.C., Maldonado, M.I., Fernandez-Ibanez, P., Gernjak, W. (2007). Photocatalytic decontamination and disinfection of water with solar collectors. Catal. Today, 122 (1-2): 137-149. doi:10.1016/ j.cattod.2007.01.034.
- Moghadam, M.T., Lesage, G., Mohammadi, T., Mericq, J.P., Mendret, J., Heran, M., Faur, C., Brosillon, S., Hemmati, M., Naeimpoor, F. (2015). Improved antifouling properties of TiO2/PVDF nanocomposite membranes in UV-coupled ultrafiltration. J. Appl. Polym. Sci. 132 (21):13-15. doi:10.1002/app.41731.
- Ochoa, N.A., Masuelli, M., Marchese, J. (2003). Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes. J. Memb. Sci., 226(1-2): 203-211. doi:10.1016/j.memsci. 2003.09.004.
- Lin, Z., Zhao L, Dong Y (2015). Chemosphere Quantitative characterization of hydroxyl radical generation in a goethite-catalyzed Fenton-like reaction. Chemosphere,141:7–12. doi:10.1016/j.chemosphere.2015.05.066.
- Gao, B., Liu, L., Liu, J., Yang, F. (2013). Photocatalytic degradation of 2,4,6-tribromophenol over Fe-doped ZnIn2S4: Stable activity and enhanced debromination. Appl. Catal. B Environ., 129: 89-97. doi:10.1016/j.apcatb.2012.09.007.
- Lee, H., Choi, J., Lee, S., Yun, S.T., Lee, C., Lee, J. (2013). Kinetic enhancement in photocatalytic oxidation of organic compounds by WO3 in the presence of Fenton-like reagent. Appl. Catal. B Environ., 138-139: 311-317. doi:10.1016/j.apcatb.2013.03.006.
- Gao, X., Su, X., Yang, C., Xiao, F., Wang, J., Cao, X., Wang, S., Zhang, L. (2013). Hydrothermal synthesis of WO3 nanoplates as highly sensitive cyclohexene sensor and high-efficiency MB photocatalyst. Sensors Actuators B Chem., 181: 537-543. doi:10.1016/j.snb.2013.02.031.
- Huo Y, Xie Z, Wang X, Li H, Hoang M, Caruso R.A (2013). Methyl orange removal by combined visible-light photocatalysis and membrane distillation. Dye Pigment, 98(1):106–12. doi:10.1016/j.dyepig.2013.02.009.
- Wang, J., Yu, Y., Zhang, L. (2013). Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light. Appl. Catal. B Environ. 136-137: 112–121. doi:10.1016/j.apcatb.2013.02.009.
- Miao, Z., Tao, S., Wang, Y., Yu, Y., Meng, C., An, Y. (2013). Hierarchically porous silica as an efficient catalyst carrier for high performance vis-light assisted Fenton degradation. Microporous Mesoporous Mater., 176: 178-185. doi:10.1016/j.micromeso.2013.04.009.
- Zhang, Y., Wang, D., Zhang, G. (2011). Photocatalytic degradation of organic contaminants by TiO2/sepiolite composites prepared at low temperature. Chem. Eng. J., 173(1): 1-10. doi:10.1016/j.cej.2010.11.028.
- Gupta, V.K., Pathania, D., Agarwal, S., Singh, P. (2012). Adsorptional photocatalytic degradation of methylene blue onto pectin-CuS nanocomposite under solar light. J. Hazard. Mater., 243: 179-186. doi:10.1016/j.jhazmat. 2012.10.018.
- Xiao, X., Hu, R., Liu, C., Xing, C., Zuo, X., Nan, J., Wang, L. (2013). Facile microwave synthesis of novel hierarchical Bi24O31Br10 nanoflakes with excellent visible light photocatalytic performance for the degradation of tetracycline hydrochloride. Chem. Eng. J., 225: 790-797. doi:10.1016/j.cej.2013.03.103.
- Lu, S.Y., Wu, D., Wang, Q. L., Yan, J., Buekens, A.G., Cen, K.F. (2011). Photocatalytic decomposition on nano-TiO2: Destruction of chloroaromatic compounds. Chemosphere, 82 (9):1215-1224. doi:10.1016/j.chemosphere. 2010.12.034.
- Mahmoodi, N.M., Arami, M., Limaee, N.Y (2006). Photocatalytic degradation of triazinic ring-containing azo dye (Reactive Red 198) by using immobilized TiO2 photoreactor: Bench scale study. J. Hazard. Mater., 133(1-3): 113-118. doi:10.1016/j.jhazmat.2005.09.057.
- Mu, R., Xu, Z., Li, L., Shao, Y., Wan, H., Zheng, S. (2010). On the photocatalytic properties of elongated TiO2 nanoparticles for phenol degradation and Cr(VI) reduction. J. Hazard. Mater.,176 (1-3): 495–502. doi:10.1016/ j.jhazmat.2009.11.057.
- Yang, S., Gu, J.S., Yu, H.Y., Zhou, J., Li, S.F., Wu, X.M., Wang, L. (2011). Polypropylene membrane surface modification by RAFT grafting polymerization and TiO2 photocatalysts immobilization for phenol decomposition in a photocatalytic membrane reactor. Sep. Purif. Technol. 83: 157-165. doi:10.1016/j.seppur.2011.09.030.
- Wang, N., Chu, W., Zhang, T., Zhao, X. (2011). Manganese promoting effects on the Co–Ce–Zr–Ox nano catalysts for methane dry reforming with carbon dioxide to hydrogen and carbon monoxide. Chem. Eng. J., 170(2-3): 457-463. doi:10.1016/j.cej.2010.12.042.
- Gupta, V.K. (2009). Application of low-cost adsorbents for dye removal - A review. J. Environ. Manage., 90 (8): 2313-2342. doi:10.1016/j.jenvman.2008.11.017.
- Meriläinen, A., Seppälä, A., Kauranen, P. (2012). Minimizing specific energy consumption of oxygen enrichment in polymeric hollow fiber membrane modules. Applied energy, 94: 285–294. doi:10.1016/j.apenergy. 2012.01.069.
- Peng, N., Widjojo, N., Sukitpaneenit, P., Teoh, M.M., Lipscomb, G.G., Chung, T.S., Lai, J.Y. (2012). Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future. Prog. Polym. Sci., 37 (10): 1401-1424. doi:10.1016/j.progpolymsci. 2012.01.001.
- Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., Batzill, M. (2014). Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films. Scientific Reports, 4: 4043.
- Li, X., Xiong, Y., Zou, L., Wang, M., Xie, Y. (2007). Polymer-induced generation of anatase TiO2 hollow nanostructures. Microporous and Mesoporous Materials 112 (1-3): 641–646. doi:10.1016/j.micromeso. 2007.10.034.
- Benedix, R., Dehn, F., Quaas, J., Orgass, M. (2000). Application of titanium dioxide photocatalysis to create self-cleaning building materials. Lacer, 3: 157-168.
- Damodar, R.A., You, S., Chou, H. (2009). Study the self cleaning , antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. Journal of Hazardous Materials, 172(1-3): 1321-1328. doi:10.1016/j.jhazmat.2009.07.139.
- Dzinun, H., Othman, M.H.D., Ismail, A.F., Puteh, M.H., Rahman, M.A., Jaafar, J. (2016). Photocatalytic degradation of nonylphenol using co-extruded dual-layer hollow fibre membranes incorporated with a different ratio of TiO2/PVDF. React. Funct. Polym., 99: 80-87. doi:10.1016/ j.reactfunctpolym.2015.12.011.
- Liang, S., Kang, Y., Tiraferri, A., Giannelis, E.P., Huang, X., Elimelech, M. (2013). Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles. ACS Appl. Mater. Interfaces, 5 (14): 6694-6703. doi:10.1021/am401462e.
- Akpan, U.G., Hameed, B.H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts : A review. Journal of Hazardous Materials, 170(2-3): 520-529. doi:10.1016/j.jhazmat. 2009.05.039.
- Kang, G.D., Cao, Y. (2014). Application and modification of poly(vinylidene fluoride) (PVDF) membranes - A review. J. Memb. Sci., 463:145-165. doi:10.1016/j.memsci. 2014.03.055.
- Liu, F., Hashim, N.A., Liu, Y., Abed, M.R.M., Li, K. (2011). Progress in the production and modification of PVDF membranes. J. Memb. Sci., 375(1-2): 1-27. doi:10.1016/j.memsci. 2011.03.014.
- Ngang, H.P., Ooi, B.S., Ahmad, A.L., Lai, S.O. (2012). Preparation of PVDF-TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chem. Eng. J., 197: 359-367. doi:10.1016/j.cej.2012.05.050.
- Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., Herrmann, J.M. (2001). Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B Environ., 31 (2): 145-157. doi:10.1016/S0926-3373(00)00276-9.
- Konstantinou, I.K., Albanis, T.A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ., 49 (1): 1-14. doi:10.1016/j.apcatb.2003.11.010.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission.
Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including: use for classroom teaching by Author or Author's institutionand presentation at a meeting or conference and distributing copies to attendees; use for internal training by author's company; distribution to colleagues for their reseearch use; use in a subsequent compilation of the author's works; inclusion in a thesis or dissertation; reuse of portions or extrcats from the article in other works (with full acknowledgement of final article); preparation of derivative works (other than commercial purposes) (with full acknowledgement of final article); voluntary posting on open web sites operated by author or author’s institution for scholarly purposes (follow CC by SA License).
Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
Copyright Transfer Agreement
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright publishing of the article shall be assigned to Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University as publisher of the journal.
Copyright encompasses exclusive rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations. The reproduction of any part of this journal, its storage in databases and its transmission by any form or media, such as electronic, electrostatic and mechanical copies, photocopies, recordings, magnetic media, etc., will be allowed only with a written permission from Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University, the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright, our journal authors retain (or are granted back) significant scholarly rights.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form BCREC 2016]
The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Prof. Dr. I. Istadi (Editor-in-Chief)
Editorial Office of Bulletin of Chemical Reaction Engineering and Catalysis
Department of Chemical Engineering, Diponegoro University
Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275
Telp.: +62-24-7460058, Fax.: +62-24-76480675
E-mail: bcrec[at]live.undip.ac.id