Preparation, Characterization, and Catalytic Activity of Tin (Antimony) Substituted and Lacunar Dawson Phosphotungstomolybdates for Synthesis of Adipic Acid

Mohamed Riad Guerroudj  -  Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Algeria
*Leila Dermeche  -  Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Algeria
Lynda Mouheb  -  Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Algeria
Tassadit Mazari  -  Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Algeria
Siham Benadji  -  Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Algeria
Chérifa Rabia  -  Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), Algeria
Received: 6 Jul 2018; Revised: 21 Nov 2018; Accepted: 4 Dec 2018; Published: 1 Aug 2019; Available online: 30 Apr 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

Tin (antimony) substituted and lacunar Dawson phosphotungstomolybdates (a1-K10P2W12Mo5ÿO61, a1-K8P2W12Mo5SnO61 and a-Cs4SnP2W12Mo6O62,and a-Cs3SbP2W12Mo6O62) were synthesized and characterized by Fourier Transform Infra Red (FTIR), nuclear magnetic resonance (31P NMR), Visible Ultra Violet (UV-Vis) spectroscopy, and X-ray diffraction (XRD). Their catalytic properties were examined in the oxidation reaction of cyclohexanone at 90 °C and that of cyclohexene at 70 °C to adipic acid (AA), in presence of hydrogen peroxide and in free solvent. The effects of catalyst/substrate molar ratios, hydrogene peroxide flow rate, heteropolysalt composition, and cyclohexanol addition on AA yields were studied. The Cs4SnP2W12Mo6O62 (the most efficient) led to 61 % of AA yield from the cyclohexanone oxidation using a catalyst/substrate molar ratio of 13.3×10-4, H2O2 flow rate of 0.5 mL/h, and a reaction time of 20 h. Copyright © 2019 BCREC Group. All rights reserved


Keywords: Dawson; polyoxometalate; adipic acid; cyclohexanone; cyclohexene

Article Metrics:

  1. Li, G.X., Ding, Y., Wang, J.M., Suo, J. (2007). New progress of Keggin and Wells-Dawson type polyoxometalates catalyze acid and oxidative reactions. J. Mol. Catal. A: Chem., 262 (1-2): 67-76.
  2. Li, W.Y., Liu, Y.Y., Zheng, H.Y., Li, Z. (2010). Molecular structure and application of heteropolyacid (salt) catalysts for organic synthesis. Chemical Industry and Engineering Progress, 29 (2): 243-249.
  3. Bielański, A., Lubańska, A. (2004). FTIR investigation on Wells-Dawson and Keggin type heteropolyacids: Dehydration and ethanol sorption. J. Mol. Catal. A: Chem., 224(1-2): 179-187.
  4. Heravi, M.M., Sadjadi, S. (2009). Recent developments in use of heteropolyacids, their salts and polyoxometalates in organic synthesis. J. Iran. Chem. Soc., 6(1): 1-54.
  5. Cavani, F., Mezzogori, R., Trovarelli, A. (2003). The characterization and the catalytic activity of modified Wells–Dawson-type polyoxometalates in the oxidehydrogenation of isobutane to isobutene. J. Mol. Catal. A: Chem., 204-205(1): 599-607.
  6. Pozéniczek, J., Lubańska, A., Micek-Ilnicka, A., Mucha, D., Lalik, E., Bielański, A. (2006). TiO2 and SiO2 supported Wells-Dawson heteropolyacid H6P2W18O62 as the catalyst for ETBE formation. Appl. Catal. A: Gen., 298: 217-224.
  7. Yu, J., Yang, P., Yang, Y., Wu, T., Parquette, J.R., (2006). Hydroxylation of phenol with hydrogen peroxide over tungstovanadophosphates with Dawson structure. Catal. Commun., 7(3): 153-156.
  8. Dermeche, L., Salhi, N., Hocine, S., Thouvenot, R., Rabia, C. (2012). Effective Dawson type polyoxometallate catalysts for methanol oxidation. J. Mol. Catal. A: Chem. 356: 29-35.
  9. Saher, L., Makhloufi-Chebli, M., Dermeche, L., Boutemeur-Khedis, B., Rabia, C., Silva, A.M.S., Hamdi, M. (2016). Keggin and Dawson-type polyoxometalates as efficient catalysts for the synthesis of 3,4-dihydropyrimidinones: experimental and theoretical studies. Tetrahedron Letters. 57(13): 1492-1496.
  10. Mansuy, D., Bartoli, J.F., Battioni, P., Lyon, D.K., Finke, R.G. (1991). Highly oxidation resistant inorganic-porphyrin analogue polyoxometalate oxidation catalysts. Catalysis of olefin epoxidation and aliphatic and aromatic hydroxylations starting from a2-P2W17O61 (Mn+.Br)(n-11) (Mn+ = Mn3+,Fe3+,Co2+,Ni2+,Cu2+), including quantitative comparisons to metalloporphyrin catalysts. J. Am. Chem. Soc., 113(19): 7222-7226.
  11. Chen, D., Yang, X., Zhou, H., He, J. (2010). Green catalytic oxidation of cyclohexanone with H2O2 to adipic acid using a monovacant dawson heteropolytungstate a catalyst. Shiyou Huagong/Petrochemical Technology, 39(6): 656-660.
  12. Moudjahed, M., Dermeche, L., Benadji, S., Mazari, T., Rabia, C. (2016). Dawson-type polyoxometalates as green catalysts for adipic acid synthesis. J. Mol. Catal. A: Chem., 414: 72-77.
  13. Briand, L.E., Baronetti, G.T., Thomas, H.J. (2003). The state of the art on Wells–Dawson heteropoly-compounds. A review of their properties and applications. Appl. Catal. A: Gen., 256(1-2): 37-50.
  14. Davis, D.D., Kemp, D.R. (1991). Adipic Acid, M. Howe-Grant (Ed.), In ECT, <>
  15. Castellan, A., Bart, J.C.J., Cavallaro, S. (1991). Synthesis of adipic acid via the nitric acid oxidation of cyclohexanol in a two-step batch process. Catal. Today., 9(3): 285-299.
  16. Castellan, A., Bart, J.C.J., Cavallaro, S. (1991). Nitric acid reaction of cyclohexanol to adipic acid. Catal. Today., 9(3): 255-283.
  17. Thiemens, M.H., Trogler, W.C. (1991). Nylon production: an unknown source of atmospheric nitrous oxide. Science, 251(4996): 932-934.
  18. Cavani, F., Ferroni, L., Frattini, A., Lucarelli, C., Mazzini, A., Raabova, K., Babini, P. (2011). Evidence for the presence of alternative mechanisms in the oxidation of cyclohexanone to adipic acid with oxygen, catalysed by Keggin polyoxometalates. Appl. Catal. A: Gen., 391(1-2): 118-124.
  19. Mazari, T., Benadji, S., Tahar, A., Dermeche, L., Rabia, C. (2013). Liquid-Phase Synthesis of Adipic Acid Using Keggin-Type Phosphomolybdates Catalysts. J. Mater. Sci. Eng. B., 3(3B): 146-151.
  20. Benadji, S., Mazari, T., Dermeche, L., Salhi, N., Cadot, E. Rabia, C. (2013). Clean Alternative for Adipic Acid Synthesis Via Liquid-Phase Oxidation of Cyclohexanone and Cyclohexanol Over H3−2xCoxPMo12O40 Catalysts with Hydrogen Peroxide. Catal. Lett., 143(8): 749-755.
  21. Tahar, A., Benadji, S., Mazari, T., Dermeche, L., Marchal-Roch, C., Rabia, C. (2015). Preparation, Characterization and Reactivity of Keggin Type Phosphomolybdates, H3−2xNixPMo12O40 and (NH4)3−2xNixPMo12O40, for Adipic Acid Synthesis. Catal. Lett., 145(2): 569-575.
  22. Mouheb, L., Dermeche, L., Mazari, T., Benadji, S., Essayem, N., Rabia, C. (2018). Clean Adipic Acid Synthesis from Liquid-Phase Oxidation of Cyclohexanone and Cyclohexanol Using (NH4)xAyPMo12O40 (A: Sb, Sn, Bi) Mixed Heteropolysalts and Hydrogen Peroxide in Free Solvent. Catal. Lett., 148(2): 612-620.
  23. Chavan, S.A., Srinivas, D., Ratnasamy, P. (2002). Oxidation of cyclohexane, cyclohexanone, and cyclohexanol to adipic acid by a non-HNO3 route over Co/Mn cluster complexes. J. Catal., 212(1): 39-45.
  24. Iwahama, T., Syojyo, K., Sakaguchi, S. Ishii, Y. (1998). Direct conversion of cyclohexane into adipic acid with molecular oxygen catalyzed by N-hydroxyphthalimide combined with Mn (acac)2 and Co(OAc)2. Org. Proc. Res. Dev., 2(4): 255-260.
  25. Bonnet, D., Ireland, T., Fache, E. Simonato, J.P. (2006). Innovative direct synthesis of adipic acid by air oxidation of cyclohexane. Green Chem., 8(6): 556-559.
  26. Lü, H., Ren, W., Liu, P., Qi, S., Wang, W., Feng, Y. & Wang, Y. (2012). One-step aerobic oxidation of cyclohexane to adipic acid using an Anderson-type catalyst [(C18H37)2 N (CH3)2]6Mo7O24. Appl. Catal. A: Gen., 441-442(1): 136-141.
  27. Nomiya, K., Miwa, M., Sugaya, Y. (1984). Catalysis by heteropolyacid-VII. Catalytic oxidation of cyclohexanol by dodecamolybdate. Polyhedron, 3(5): 607-610.
  28. Contant, R., Abbessi, M., Thouvenot, R. Hervé, G. (2004). Dawson Type Heteropolyanions. 3. Syntheses and 31P, 51V, and 183W NMR Structural Investigation of Octadeca (molybdo− tungsto−vanado) diphosphates Related to the [H2P2W12O48]12-Anion. Inorg. Chem., 43(12): 3597-3604.
  29. Mbomekalle, I.M., Lu, Y.W., Keita, B., Nadjo, L. (2004). Simple, high yield and reagent-saving synthesis of pure a-K6P2W18O62.14H2O. Inorg. Chem. Commun., 7(1): 86-90.
  30. Contant, R., Klemperer, W.G., Yaghi, O. (2007). Potassium octadecatungstodiphosphates (V) and related lacunary compounds. Inorg. Synth., 27: 104-111.
  31. Contant, R., Ciabrini, J.P. (1981). Stereospecific preparations of new n-molybdo-(18-n)-tungsto-2-phosphates and related “defect” compounds (n = 2, 4 or 5). J. Inorg. Nucl. Chem., 43(7): 1525-1528.
  32. Lyon, D.K., Miller, W.K., Novet, T., Domaille, P.J., Evitt, E., Johnson, D.C. Finke, R.G. (1991). Highly oxidation resistant inorganic-porphyrin analog polyoxometalate oxidation catalysts. The Synthesis and Characterization of Aqueous-Soluble Potassium Salts of a2-P2W17O61(Mn+.OH2)(n-10) and Organic Solvent Soluble Tetra-n-butylammonium Salts of a2-P2W17O61(Mn+.Br)(n-11) (M = Mn3+,Fe3+,Co2+,Ni2+,Cu2+)”. J. Am. Chem. Soc., 113(19): 7209-7221.
  33. Rocchiccioli-Deltcheff, C. Thouvenot, R. (1979). Vibrational Studies of Heteropolyanions Related to a-P2W18O626- I-Infrared Evidence of the Structure of a1 and a2-P2W17O6110−. Spectrosc. Lett., 12(2): 127-138.
  34. Randall, W.J. (1996). The preparation of potassium salt of the Wells-Dawson type heteropolyacid. Inorg. Synth., 31: 177-…...
  35. Harmalker, S.P., Leparulo, M.A., Pope, M.T. (1983). Mixed-valence chemistry of adjacent vanadium centers in heteropolytungstate anions. I. Synthesis and electronic structures of mono-, di-, and trisubstituted derivatives of. alpha.-octadecatungstodiphosphate (6-) ion (alpha.-[P2W18O62]6-). J. Am. Chem. Soc., 105(13): 4286-4292.
  36. Fournier, M., Louis, C., Che, M., Chaquin, P. Masure, D. (1989). Polyoxometallates as models for oxide catalysts: Part I. An UV-visible reflectance study of polyoxomolybdates: Influence of polyhedra arrangement on the electronic transitions and comparison with supported molybdenum catalysts. J. Catal., 119(2): 400-414.
  37. Cavani, F., Mezzogori, R., Pigamo, A., Trifirò, F. Etienne, E. (2001). Main aspects of the selective oxidation of isobutane to methacrylic acid catalyzed by Keggin-type polyoxometalates. Catal. Today., 71(1-2): 97-110.
  38. Cavani, F., Mezzogori, R., Pigamo, A. Trifiro, F. (2001). Improved catalytic performance of Keggin-type polyoxometalates in the oxidation of isobutane to methacrylic acid under hydrocarbon-lean conditions using antimony-doped catalysts. Chem. Eng. J., 82(1-3): 33-42.
  39. Mazari, T., Marchal, C.R., Hocine, S., Salhi, N. Rabia, C. (2009). Oxidation of propane over substituted Keggin phosphomolybdate salts. J. Nat. Gas. Chem., 18(3): 319-324.
  40. Dermeche, L., Thouvenot, R., Hocine, S. Rabia, C. (2009). Preparation and characterization of mixed ammonium salts of Keggin phosphomolybdate. Inorg. Chim. Acta., 362(11): 3896-3900.
  41. Mazari, T., Marchal, C.R., Hocine, S., Salhi, N. Rabia, C. (2010). Oxidation of propane over ammonium-transition metal mixed keggin phosphomolybdate salts. J. Nat. Gas. Chem., 19(1): 54-60.
  42. Cabello, C.I., Botto, I.L. Thomas, H.J. (2000). Anderson type heteropolyoxomolybdates in catalysis 1.(NH4)3[CoMo6O24H6]·7H2O/g-Al2O3 as alternative of Co-Mo/g-Al2O3 hydrotreating catalysts. Appl. Catal. A: Gen., 197(1): 79-86.
  43. Dawson, B. (1953). The Structure of the 9(18)- Heteropoly Anion in Potassium 9(18)- Tungstophosphate, K6(P2W18O62). 14 (H2O). Acta. Cryst., 6: 113-126.
  44. Comuzzi, C., Dolcetti, G., Trovarelli, A., Cavani, F., Trifirò, F., Llorca, J., Finke, R.G. (1996). The solid-state rearrangement of the Wells-Dawson K6P2W18062.10H2O to a stable Keggin-type heteropolyanion phase: a catalyst for the selective oxidation of isobutane to isobutene. Catal. Lett., 36(1-2): 75-79.
  45. Comuzzi, C., Primavera, A., Trovarelli, A., Bini, G., Cavani, F.(1996). Thermal stability and catalytic properties of the Wells-Dawson K6P2W18062.10H2O heteropoly compound in the oxidative dehydrogenation of isobutane to isobutene. Top Catal., 3(3-4): 387-406.
  46. Fujitani, T., Nakazawa, M. (1988). A process for the preparation of carboxylic acid. Japanese Patent 63-093746.
  47. Goyal, R., Sameer, S., Sarkar, B., Bag, A., Singhal, N. Bordoloi, A. (2017). Synthesis of AgWCNx Nanocomposites for the One‐Step Conversion of Cyclohexene to Adipic Acid and Its Mechanistic Studies. Chem. Eur. J., 23(65): 16555-16565.
  48. Wang, X.Y., Miao, Y.X., Jia, Q., Su, Y.L., Cao, S.X. Dai, X.M. (2003). Study on the effect of solution acidity on the green synthesis of adipic acid. Petrochem. Tech., 32(7): 608-610.
  49. Jin, P., Zhao, Z., Dai, Z., Wei, D., Tang, M. Wang, X. (2011). Influence of reaction conditions on product distribution in the green oxidation of cyclohexene to adipic acid with hydrogen peroxide. Catal. Today., 175(1): 619-624.
  50. Zhu, W., Li, H., He, X., Zhang, Q., Shu, H. Yan, Y. (2008). Synthesis of adipic acid catalyzed by surfactant-type peroxotungstates and peroxomolybdates. Catal. Commun., 9(4): 551-555.
  51. Shang, M., Noël, T., Wang, Q., Su, Y., Miyabayashi, K., Hessel, V., Hasebe, S. (2015). 2-and 3-Stage temperature ramping for the direct synthesis of adipic acid in micro-flow packed-bed reactors. Chem. Eng. J., 260: 454-462.
  52. Sato, K., Aoki, M., Noyori, R.A. (1998). Green route to adipic acid: Direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science, 281(5383): 1646-1647.

No citation recorded.