skip to main content

Preparation, Characterization, and Catalytic Activity of Tin (Antimony) Substituted and Lacunar Dawson Phosphotungstomolybdates for Synthesis of Adipic Acid

1Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32, El-Alia, 16111 Bab-Ezzouar, Alger, Algeria

2Centre de Recherche Scientifique et Technique en Analyse Physico-chimique CRAPC, BP 384, Zone Industrielle Bou-Ismail, RP 42004 Tipaz, Algeria

3Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri B.P.17 RP, 15000 Tizi-Ouzou, Algeria

Received: 6 Jul 2018; Revised: 21 Nov 2018; Accepted: 4 Dec 2018; Published: 1 Aug 2019; Available online: 30 Apr 2019.
Open Access Copyright (c) 2019 by Authors, Published by BCREC Group under

Citation Format:
Cover Image

Tin (antimony) substituted and lacunar Dawson phosphotungstomolybdates (a1-K10P2W12Mo5ÿO61, a1-K8P2W12Mo5SnO61 and a-Cs4SnP2W12Mo6O62,and a-Cs3SbP2W12Mo6O62) were synthesized and characterized by Fourier Transform Infra Red (FTIR), nuclear magnetic resonance (31P NMR), Visible Ultra Violet (UV-Vis) spectroscopy, and X-ray diffraction (XRD). Their catalytic properties were examined in the oxidation reaction of cyclohexanone at 90 °C and that of cyclohexene at 70 °C to adipic acid (AA), in presence of hydrogen peroxide and in free solvent. The effects of catalyst/substrate molar ratios, hydrogene peroxide flow rate, heteropolysalt composition, and cyclohexanol addition on AA yields were studied. The Cs4SnP2W12Mo6O62 (the most efficient) led to 61 % of AA yield from the cyclohexanone oxidation using a catalyst/substrate molar ratio of 13.3×10-4, H2O2 flow rate of 0.5 mL/h, and a reaction time of 20 h. 

Fulltext View|Download
Keywords: Dawson; polyoxometalate; adipic acid; cyclohexanone; cyclohexene
Funding: Ministry of Higher Education and Scientific  Research, Algeria

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
  1. Li, G.X., Ding, Y., Wang, J.M., Suo, J. (2007). New progress of Keggin and Wells-Dawson type polyoxometalates catalyze acid and oxidative reactions. J. Mol. Catal. A: Chem., 262 (1-2): 67-76
  2. Li, W.Y., Liu, Y.Y., Zheng, H.Y., Li, Z. (2010). Molecular structure and application of heteropolyacid (salt) catalysts for organic synthesis. Chemical Industry and Engineering Progress, 29 (2): 243-249
  3. Bielański, A., Lubańska, A. (2004). FTIR investigation on Wells-Dawson and Keggin type heteropolyacids: Dehydration and ethanol sorption. J. Mol. Catal. A: Chem., 224(1-2): 179-187
  4. Heravi, M.M., Sadjadi, S. (2009). Recent developments in use of heteropolyacids, their salts and polyoxometalates in organic synthesis. J. Iran. Chem. Soc., 6(1): 1-54
  5. Cavani, F., Mezzogori, R., Trovarelli, A. (2003). The characterization and the catalytic activity of modified Wells–Dawson-type polyoxometalates in the oxidehydrogenation of isobutane to isobutene. J. Mol. Catal. A: Chem., 204-205(1): 599-607
  6. Pozéniczek, J., Lubańska, A., Micek-Ilnicka, A., Mucha, D., Lalik, E., Bielański, A. (2006). TiO2 and SiO2 supported Wells-Dawson heteropolyacid H6P2W18O62 as the catalyst for ETBE formation. Appl. Catal. A: Gen., 298: 217-224
  7. Yu, J., Yang, P., Yang, Y., Wu, T., Parquette, J.R., (2006). Hydroxylation of phenol with hydrogen peroxide over tungstovanadophosphates with Dawson structure. Catal. Commun., 7(3): 153-156
  8. Dermeche, L., Salhi, N., Hocine, S., Thouvenot, R., Rabia, C. (2012). Effective Dawson type polyoxometallate catalysts for methanol oxidation. J. Mol. Catal. A: Chem. 356: 29-35
  9. Saher, L., Makhloufi-Chebli, M., Dermeche, L., Boutemeur-Khedis, B., Rabia, C., Silva, A.M.S., Hamdi, M. (2016). Keggin and Dawson-type polyoxometalates as efficient catalysts for the synthesis of 3,4-dihydropyrimidinones: experimental and theoretical studies. Tetrahedron Letters. 57(13): 1492-1496
  10. Mansuy, D., Bartoli, J.F., Battioni, P., Lyon, D.K., Finke, R.G. (1991). Highly oxidation resistant inorganic-porphyrin analogue polyoxometalate oxidation catalysts. Catalysis of olefin epoxidation and aliphatic and aromatic hydroxylations starting from a2-P2W17O61 (Mn+.Br)(n-11) (Mn+ = Mn3+,Fe3+,Co2+,Ni2+,Cu2+), including quantitative comparisons to metalloporphyrin catalysts. J. Am. Chem. Soc., 113(19): 7222-7226
  11. Chen, D., Yang, X., Zhou, H., He, J. (2010). Green catalytic oxidation of cyclohexanone with H2O2 to adipic acid using a monovacant dawson heteropolytungstate a catalyst. Shiyou Huagong/Petrochemical Technology, 39(6): 656-660
  12. Moudjahed, M., Dermeche, L., Benadji, S., Mazari, T., Rabia, C. (2016). Dawson-type polyoxometalates as green catalysts for adipic acid synthesis. J. Mol. Catal. A: Chem., 414: 72-77
  13. Briand, L.E., Baronetti, G.T., Thomas, H.J. (2003). The state of the art on Wells–Dawson heteropoly-compounds. A review of their properties and applications. Appl. Catal. A: Gen., 256(1-2): 37-50
  14. Davis, D.D., Kemp, D.R. (1991). Adipic Acid, M. Howe-Grant (Ed.), In ECT, <>
  15. Castellan, A., Bart, J.C.J., Cavallaro, S. (1991). Synthesis of adipic acid via the nitric acid oxidation of cyclohexanol in a two-step batch process. Catal. Today., 9(3): 285-299
  16. Castellan, A., Bart, J.C.J., Cavallaro, S. (1991). Nitric acid reaction of cyclohexanol to adipic acid. Catal. Today., 9(3): 255-283
  17. Thiemens, M.H., Trogler, W.C. (1991). Nylon production: an unknown source of atmospheric nitrous oxide. Science, 251(4996): 932-934
  18. Cavani, F., Ferroni, L., Frattini, A., Lucarelli, C., Mazzini, A., Raabova, K., Babini, P. (2011). Evidence for the presence of alternative mechanisms in the oxidation of cyclohexanone to adipic acid with oxygen, catalysed by Keggin polyoxometalates. Appl. Catal. A: Gen., 391(1-2): 118-124
  19. Mazari, T., Benadji, S., Tahar, A., Dermeche, L., Rabia, C. (2013). Liquid-Phase Synthesis of Adipic Acid Using Keggin-Type Phosphomolybdates Catalysts. J. Mater. Sci. Eng. B., 3(3B): 146-151
  20. Benadji, S., Mazari, T., Dermeche, L., Salhi, N., Cadot, E. Rabia, C. (2013). Clean Alternative for Adipic Acid Synthesis Via Liquid-Phase Oxidation of Cyclohexanone and Cyclohexanol Over H3−2xCoxPMo12O40 Catalysts with Hydrogen Peroxide. Catal. Lett., 143(8): 749-755
  21. Tahar, A., Benadji, S., Mazari, T., Dermeche, L., Marchal-Roch, C., Rabia, C. (2015). Preparation, Characterization and Reactivity of Keggin Type Phosphomolybdates, H3−2xNixPMo12O40 and (NH4)3−2xNixPMo12O40, for Adipic Acid Synthesis. Catal. Lett., 145(2): 569-575
  22. Mouheb, L., Dermeche, L., Mazari, T., Benadji, S., Essayem, N., Rabia, C. (2018). Clean Adipic Acid Synthesis from Liquid-Phase Oxidation of Cyclohexanone and Cyclohexanol Using (NH4)xAyPMo12O40 (A: Sb, Sn, Bi) Mixed Heteropolysalts and Hydrogen Peroxide in Free Solvent. Catal. Lett., 148(2): 612-620
  23. Chavan, S.A., Srinivas, D., Ratnasamy, P. (2002). Oxidation of cyclohexane, cyclohexanone, and cyclohexanol to adipic acid by a non-HNO3 route over Co/Mn cluster complexes. J. Catal., 212(1): 39-45
  24. Iwahama, T., Syojyo, K., Sakaguchi, S. Ishii, Y. (1998). Direct conversion of cyclohexane into adipic acid with molecular oxygen catalyzed by N-hydroxyphthalimide combined with Mn (acac)2 and Co(OAc)2. Org. Proc. Res. Dev., 2(4): 255-260
  25. Bonnet, D., Ireland, T., Fache, E. Simonato, J.P. (2006). Innovative direct synthesis of adipic acid by air oxidation of cyclohexane. Green Chem., 8(6): 556-559
  26. Lü, H., Ren, W., Liu, P., Qi, S., Wang, W., Feng, Y. & Wang, Y. (2012). One-step aerobic oxidation of cyclohexane to adipic acid using an Anderson-type catalyst [(C18H37)2 N (CH3)2]6Mo7O24. Appl. Catal. A: Gen., 441-442(1): 136-141
  27. Nomiya, K., Miwa, M., Sugaya, Y. (1984). Catalysis by heteropolyacid-VII. Catalytic oxidation of cyclohexanol by dodecamolybdate. Polyhedron, 3(5): 607-610
  28. Contant, R., Abbessi, M., Thouvenot, R. Hervé, G. (2004). Dawson Type Heteropolyanions. 3. Syntheses and 31P, 51V, and 183W NMR Structural Investigation of Octadeca (molybdo− tungsto−vanado) diphosphates Related to the [H2P2W12O48]12-Anion. Inorg. Chem., 43(12): 3597-3604
  29. Mbomekalle, I.M., Lu, Y.W., Keita, B., Nadjo, L. (2004). Simple, high yield and reagent-saving synthesis of pure a-K6P2W18O62.14H2O. Inorg. Chem. Commun., 7(1): 86-90
  30. Contant, R., Klemperer, W.G., Yaghi, O. (2007). Potassium octadecatungstodiphosphates (V) and related lacunary compounds. Inorg. Synth., 27: 104-111
  31. Contant, R., Ciabrini, J.P. (1981). Stereospecific preparations of new n-molybdo-(18-n)-tungsto-2-phosphates and related “defect” compounds (n = 2, 4 or 5). J. Inorg. Nucl. Chem., 43(7): 1525-1528
  32. Lyon, D.K., Miller, W.K., Novet, T., Domaille, P.J., Evitt, E., Johnson, D.C. Finke, R.G. (1991). Highly oxidation resistant inorganic-porphyrin analog polyoxometalate oxidation catalysts. The Synthesis and Characterization of Aqueous-Soluble Potassium Salts of a2-P2W17O61(Mn+.OH2)(n-10) and Organic Solvent Soluble Tetra-n-butylammonium Salts of a2-P2W17O61(Mn+.Br)(n-11) (M = Mn3+,Fe3+,Co2+,Ni2+,Cu2+)”. J. Am. Chem. Soc., 113(19): 7209-7221
  33. Rocchiccioli-Deltcheff, C. Thouvenot, R. (1979). Vibrational Studies of Heteropolyanions Related to a-P2W18O626- I-Infrared Evidence of the Structure of a1 and a2-P2W17O6110−. Spectrosc. Lett., 12(2): 127-138
  34. Randall, W.J. (1996). The preparation of potassium salt of the Wells-Dawson type heteropolyacid. Inorg. Synth., 31: 177-…..
  35. Harmalker, S.P., Leparulo, M.A., Pope, M.T. (1983). Mixed-valence chemistry of adjacent vanadium centers in heteropolytungstate anions. I. Synthesis and electronic structures of mono-, di-, and trisubstituted derivatives of. alpha.-octadecatungstodiphosphate (6-) ion (alpha.-[P2W18O62]6-). J. Am. Chem. Soc., 105(13): 4286-4292
  36. Fournier, M., Louis, C., Che, M., Chaquin, P. Masure, D. (1989). Polyoxometallates as models for oxide catalysts: Part I. An UV-visible reflectance study of polyoxomolybdates: Influence of polyhedra arrangement on the electronic transitions and comparison with supported molybdenum catalysts. J. Catal., 119(2): 400-414
  37. Cavani, F., Mezzogori, R., Pigamo, A., Trifirò, F. Etienne, E. (2001). Main aspects of the selective oxidation of isobutane to methacrylic acid catalyzed by Keggin-type polyoxometalates. Catal. Today., 71(1-2): 97-110
  38. Cavani, F., Mezzogori, R., Pigamo, A. Trifiro, F. (2001). Improved catalytic performance of Keggin-type polyoxometalates in the oxidation of isobutane to methacrylic acid under hydrocarbon-lean conditions using antimony-doped catalysts. Chem. Eng. J., 82(1-3): 33-42
  39. Mazari, T., Marchal, C.R., Hocine, S., Salhi, N. Rabia, C. (2009). Oxidation of propane over substituted Keggin phosphomolybdate salts. J. Nat. Gas. Chem., 18(3): 319-324
  40. Dermeche, L., Thouvenot, R., Hocine, S. Rabia, C. (2009). Preparation and characterization of mixed ammonium salts of Keggin phosphomolybdate. Inorg. Chim. Acta., 362(11): 3896-3900
  41. Mazari, T., Marchal, C.R., Hocine, S., Salhi, N. Rabia, C. (2010). Oxidation of propane over ammonium-transition metal mixed keggin phosphomolybdate salts. J. Nat. Gas. Chem., 19(1): 54-60
  42. Cabello, C.I., Botto, I.L. Thomas, H.J. (2000). Anderson type heteropolyoxomolybdates in catalysis 1.(NH4)3[CoMo6O24H6]·7H2O/g-Al2O3 as alternative of Co-Mo/g-Al2O3 hydrotreating catalysts. Appl. Catal. A: Gen., 197(1): 79-86
  43. Dawson, B. (1953). The Structure of the 9(18)- Heteropoly Anion in Potassium 9(18)- Tungstophosphate, K6(P2W18O62). 14 (H2O). Acta. Cryst., 6: 113-126
  44. Comuzzi, C., Dolcetti, G., Trovarelli, A., Cavani, F., Trifirò, F., Llorca, J., Finke, R.G. (1996). The solid-state rearrangement of the Wells-Dawson K6P2W18062.10H2O to a stable Keggin-type heteropolyanion phase: a catalyst for the selective oxidation of isobutane to isobutene. Catal. Lett., 36(1-2): 75-79
  45. Comuzzi, C., Primavera, A., Trovarelli, A., Bini, G., Cavani, F.(1996). Thermal stability and catalytic properties of the Wells-Dawson K6P2W18062.10H2O heteropoly compound in the oxidative dehydrogenation of isobutane to isobutene. Top Catal., 3(3-4): 387-406
  46. Fujitani, T., Nakazawa, M. (1988). A process for the preparation of carboxylic acid. Japanese Patent 63-093746
  47. Goyal, R., Sameer, S., Sarkar, B., Bag, A., Singhal, N. Bordoloi, A. (2017). Synthesis of AgWCNx Nanocomposites for the One‐Step Conversion of Cyclohexene to Adipic Acid and Its Mechanistic Studies. Chem. Eur. J., 23(65): 16555-16565
  48. Wang, X.Y., Miao, Y.X., Jia, Q., Su, Y.L., Cao, S.X. Dai, X.M. (2003). Study on the effect of solution acidity on the green synthesis of adipic acid. Petrochem. Tech., 32(7): 608-610
  49. Jin, P., Zhao, Z., Dai, Z., Wei, D., Tang, M. Wang, X. (2011). Influence of reaction conditions on product distribution in the green oxidation of cyclohexene to adipic acid with hydrogen peroxide. Catal. Today., 175(1): 619-624
  50. Zhu, W., Li, H., He, X., Zhang, Q., Shu, H. Yan, Y. (2008). Synthesis of adipic acid catalyzed by surfactant-type peroxotungstates and peroxomolybdates. Catal. Commun., 9(4): 551-555
  51. Shang, M., Noël, T., Wang, Q., Su, Y., Miyabayashi, K., Hessel, V., Hasebe, S. (2015). 2-and 3-Stage temperature ramping for the direct synthesis of adipic acid in micro-flow packed-bed reactors. Chem. Eng. J., 260: 454-462
  52. Sato, K., Aoki, M., Noyori, R.A. (1998). Green route to adipic acid: Direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science, 281(5383): 1646-1647

Last update: 2021-10-15 06:12:06

No citation recorded.

Last update: 2021-10-15 06:12:06

  1. Keggin-Type Mixed Polyoxomolybdates Catalyzed Cyclohexanone Oxidation by Hydrogen Peroxide: In Situ IR Pyridine Adsorption

    Mouheb L.. Catalysis Letters, 127 (11), 2020. doi: 10.1007/s10562-020-03231-x