1Department of Biotechnology Engineering, International Islamic University Malaysia, 53100, Gombak, Malaysia
2International Institute for Halal Research & Training (INHART), International Islamic University Malaysia, 53100, Gombak, Malaysia
3Department of Chemical Engineering, Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak, Malaysia
BibTex Citation Data :
@article{BCREC2894, author = {Nur Abd Halin and Maan Fahmi Al-Khatib and Hamzah Mohd. Salleh and Mohamed Nasef}, title = {Preparation and Candida rugosa Lipase Immobilization on Nylon-6 Grafted and Aminated (Polyvinyl Benzyl Chloride) Microfibers}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {14}, number = {2}, year = {2019}, keywords = {Lipase immobilization; PVBC-grafted nylon-6 microfiber; amination; response surface methodology; optimization; enzyme activity}, abstract = { This paper demonstrates a simplified procedure for the preparation of a nylon-6 microfibers based support for the immobilization of Candida rugosa lipase via covalent attachment to enhance the stability and reusability of lipase. The preparation of the support was done by radiation induced graft copolymerization (RIGC) of vinyl benzyl chloride (VBC) onto nylon-6 microfibers followed by amination with ethanolamine to facilitate the immobilization of lipase. Fourier transfer infra red (FTIR) and scanning electron microscope (SEM) were used to study the chemical and physical changes following grafting, amination and immobilization. Response surface methodology (RSM) was applied for the optimization of lipase immobilization on the aminated microfibers. The optimization parameters were incubation time, pH, and lipase concentration. Moreover, this study investigated the effect of temperature, pH, and storage stability and reusability on the lipase in its immobilized and free forms. The developed model from RSM showed an R 2 value of 0.9823 and P-value < 0.001 indicating that the model is significant. The optimum temperatures for both immobilized and free lipases were 45 °C, whereas the best pH values for lipase activity were at pH 8 and pH 7, respectively. This study also identifies values for K M and V max for both immobilized and free lipase accordingly. Based on the results, immobilized lipase had significantly improved the stability and reusability of lipase compared to that in free forms. }, issn = {1978-2993}, pages = {369--379} doi = {10.9767/bcrec.14.2.2894.369-379}, url = {https://ejournal2.undip.ac.id/index.php/bcrec/article/view/2894} }
Refworks Citation Data :
This paper demonstrates a simplified procedure for the preparation of a nylon-6 microfibers based support for the immobilization of Candida rugosa lipase via covalent attachment to enhance the stability and reusability of lipase. The preparation of the support was done by radiation induced graft copolymerization (RIGC) of vinyl benzyl chloride (VBC) onto nylon-6 microfibers followed by amination with ethanolamine to facilitate the immobilization of lipase. Fourier transfer infra red (FTIR) and scanning electron microscope (SEM) were used to study the chemical and physical changes following grafting, amination and immobilization. Response surface methodology (RSM) was applied for the optimization of lipase immobilization on the aminated microfibers. The optimization parameters were incubation time, pH, and lipase concentration. Moreover, this study investigated the effect of temperature, pH, and storage stability and reusability on the lipase in its immobilized and free forms. The developed model from RSM showed an R2 value of 0.9823 and P-value < 0.001 indicating that the model is significant. The optimum temperatures for both immobilized and free lipases were 45 °C, whereas the best pH values for lipase activity were at pH 8 and pH 7, respectively. This study also identifies values for KM and Vmax for both immobilized and free lipase accordingly. Based on the results, immobilized lipase had significantly improved the stability and reusability of lipase compared to that in free forms.
Article Metrics:
Last update:
In order for BCREC Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)