Removal of Iron(II) Using Intercalated Ca/Al Layered Double Hydroxides with [α-SiW12O40]4-

Tarmizi Taher -  Environmental Science Study, Graduate Program, Universitas Sriwijaya, Indonesia
Mikha Meilinda Christina -  Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Sriwijaya, Indonesia
Muhammad Said -  Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Sriwijaya, Indonesia
Nurlisa Hidayati -  Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Sriwijaya, Indonesia
Ferlinahayati Ferlinahayati -  Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Sriwijaya, Indonesia
*Aldes Lesbani -  Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Sriwijaya Environmental Science Study, Graduate Program, Universitas Sriwijaya, Indonesia
Received: 1 Jul 2018; Revised: 5 Nov 2018; Accepted: 9 Nov 2018; Published: 1 Aug 2019; Available online: 30 Apr 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Abstract

Ca/Al layered double hydroxide (LDH) was successfully synthesized by co-precipitation method at pH 11 under room temperature condition then followed by calcination at 800 oC. The synthesized Ca/Al LDH was further intercalated with Keggin ion [α-SiW12O40]4- in order to prepare the intercalated form of Ca/Al LDH. The synthesized materials were characterized by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) and used as an adsorbent for iron(II) removal from the aqueous medium. The adsorption performance was investigated by studying the kinetics and thermodynamic properties of the adsorption process. The results showed that pristine Ca/Al LDH exhibited diffraction peak at 2θ about 20o which corresponds to the layer structure of the LDH material. For the intercalated Ca/Al LDH, the diffraction observed at 2θ around 30-40o indicated that the [α-SiW12O40]4- was successfully intercalated into the interlayer space of Ca/Al LDH. Furthermore, the intercalated Ca/Al LDH showed higher adsorption capacity toward iron(II) than the pristine form of Ca/Al LDH. Copyright © 2019 BCREC Group. All rights reserved

 

Keywords
Layered Double Hydroxides; Iron(II); Keggin Ion; Adsorption

Article Metrics:

  1. Chen, S., Wu, D. (2018). Adapting ecological risk valuation for natural resource damage assessment in water pollution. Environmental Research, 164: 85-92. doi: 10.1016/j.envres.2018.01.005
  2. Wang, Q., Yang, Z. (2016). Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution, 218: 358-365. doi: 10.1016/j.envpol.2016.07.011
  3. Earnhart, D. (2013). Water Pollution from Industrial Sources. In J.F.B.T.-E. of E. Shogren Natural Resource, and Environmental Economics (Ed.), (pp. 114-120). Waltham: Elsevier. doi:10.1016/B978-0-12-375067-9.00091-7
  4. Noor, N.M., Othman, R., Mubarak, N.M., Abdullah, E.C. (2017). Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. Journal of the Taiwan Institute of Chemical Engineers, 78: 168-177. doi: 10.1016/j.jtice.2017.05.023
  5. Bhunia, B., Prasad Uday, U.S., Oinam, G., Mondal, A., Bandyopadhyay, T.K., Tiwari, O.N. (2018). Characterization, genetic regulation and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal. Carbohydrate Polymers, 179: 228-243.doi:10.1016/ j.carbpol.2017.09.091
  6. Tran, T.-K., Chiu, K.-F., Lin, C.-Y., Leu, H.-J. (2017). Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process. International Journal of Hydrogen Energy, 42(45): 27741-27748. doi:10.1016/j.ijhydene.2017.05.156
  7. Hermawan, A.A., Chang, J.W., Pasbakhsh, P., Hart, F., Talei, A. (2018). Halloysite nanotubes as a fine grained material for heavy metal ions removal in tropical biofiltration systems. Applied Clay Science, 160: 106–115. doi:10.1016/j.clay.2017.12.051
  8. Taher, T., Saputri, L.I., Antini, R., Dian, A.R., Mohadi, R., Lesbani, A. (2018). An insight into the adsorption behavior of malachite green on DABCO (1,4-diazabicyclo [2.2.2] octane) modified bentonite. In AIP Conference Proceedings (Vol. 2026, p. 20010).
  9. Castro, L., Blázquez, M.L., González, F., Muñoz, J.A., Ballester, A. (2018). Heavy metal adsorption using biogenic iron compounds. Hydrometallurgy, 179: 44-51. doi:10.1016/j.hydromet.2018.05.029
  10. Sherlala, A.I.A., Raman, A.A.A., Bello, M.M., Asghar, A. (2018). A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere, 193: 1004-1017. doi:10.1016/j.chemosphere.2017.11.093
  11. Panda, L., Rath, S.S., Rao, D.S., Nayak, B.B., Das, B., Misra, P.K. (2018). Thorough understanding of the kinetics and mechanism of heavy metal adsorption onto a pyrophyllite mine waste based geopolymer. Journal of Molecular Liquids, 263: 428-441. doi:10.1016/j.molliq.2018.05.016
  12. Qiu, Q., Jiang, X., Lv, G., Chen, Z., Lu, S., Ni, M., Deng, X. (2018). Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment. Powder Technology, 335: 156-163. doi:10.1016/j.powtec.2018.05.003
  13. Uddin, M.K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308: 438-462. doi:10.1016/j.cej.2016.09.029
  14. Tohdee, K., Kaewsichan, L., Asadullah, A. (2018). Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite. Journal of Environmental Chemical Engineering, 6(2): 2821-2828. doi:10.1016/j.jece.2018.04.030
  15. Taher, T., Mohadi, R., Lesbani, A. (2018). Effect of Ti4+/clay ratio on the properties of titanium pillared bentonite and its application for Cr(VI) removal. Rasayan Journal of Chemistry, 11(3): 1244-1254. doi:10.31788/RJC.2018.1133065
  16. Anirudhan, T.S., Jalajamony, S., Sreekumari, S.S. (2012). Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalised bentonites. Applied Clay Science, 65-66: 67-71. doi:10.1016/j.clay.2012.06.005
  17. Adebowale, K.O., Unuabonah, I.E., Olu-Owolabi, B.I. (2005). Adsorption of some heavy metal ions on sulfate- and phosphate-modified kaolin. Applied Clay Science, 29(2): 145-148. doi:10.1016/j.clay.2004.10.003
  18. Mohadi, R., Hanafiah, Z., Hermansyah, H., Zulkifli, H. (2017). Adsorption of procion red and congo red dyes using microalgae Spirulina sp. Science and Technology Indonesia, 2(4): 102-104. doi:10.26554/sti.2017.2.4.102-104
  19. Zhou, H., Jiang, Z., Wei, S. (2018). A new hydrotalcite-like absorbent FeMnMg-LDH and its adsorption capacity for Pb2+ ions in water. Applied Clay Science, 153: 29-37. doi:10.1016/j.clay.2017.11.033
  20. Wang, T., Li, C., Wang, C., Wang, H. (2018). Biochar/MnAl-LDH composites for Cu (ΙΙ) removal from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538: 443-450. doi:10.1016/j.colsurfa.2017.11.034
  21. Said, M., Rahayu Palapa, N. (2017). Adsorption of congo red using Mg/Al hydrotalcite. Science & Technology Indonesia, 1(2): 17-21. doi:10.26554/sti.2017.2.1.17-21
  22. Taher, T., Rohendi, D., Mohadi, R., Lesbani, A. (2018). Thermal and Acid Activation (TAA) of bentonite as adsorbent for removal of methylene blue: A kinetics and thermodynamic study. Chiang Mai Journal of Science, 45(4): 1770-1781.
  23. Mishra, G., Dash, B., Pandey, S. (2018). Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Applied Clay Science, 153(October 2017): 172-186. doi:10.1016/j.clay.2017.12.021
  24. Xu, M., Bi, B., Xu, B., Sun, Z., Xu, L. (2018). Polyoxometalate-intercalated ZnAlFe-layered double hydroxides for adsorbing removal and photocatalytic degradation of cationic dye. Applied Clay Science. doi:10.1016/j.clay.2018.02.023
  25. Hasannia, S., Yadollahi, B. (2015). Zn-Al LDH nanostructures pillared by Fe substituted Keggin type polyoxometalate: Synthesis, characterization and catalytic effect in green oxidation of alcohols. Polyhedron. doi:10.1016/j.poly.2015.08.020
  26. Zhao, J., Huang, Q., Liu, M., Dai, Y., Chen, J., Huang, H., Wei, Y. (2017). Synthesis of functionalized MgAl-layered double hydroxides via modified mussel inspired chemistry and their application in organic dye adsorption. Journal of Colloid and Interface Science, 505: 168-177. doi:10.1016/j.jcis.2017.05.087
  27. Rahman, M. T., Kameda, T., Kumagai, S., Yoshioka, T. (2018). A novel method to delaminate nitrate-intercalated MgAl layered double hydroxides in water and application in heavy metals removal from waste water. Chemosphere, 203: 281-290. doi:10.1016/j.chemosphere.2018.03.166
  28. Chen, Y., Yao, Z., Miras, H.N., Song, Y.-F. (2015). Modular Polyoxometalate-Layered Double Hydroxide Composites as Efficient Oxidative Catalysts. Chemistry - A European Journal, 21(30): 10812-10820. doi:10.1002/chem.201501214
  29. Ma, J., Yang, M., Chen, Q., Zhang, S., Cheng, H., Wang, S., Chen, Z. (2017). Comparative study of Keggin-type polyoxometalate pillared layered double hydroxides via two synthetic routes: Characterization and catalytic behavior in green epoxidation of cyclohexene. Applied Clay Science, 150: 210-216. doi:10.1016/j.clay.2017.09.030
  30. Carriazo, D., Lima, S., Martín, C., Pillinger, M., Valente, A.A., Rives, V. (2007). Metatungstate and tungstoniobate-containing LDHs: Preparation, characterisation and activity in epoxidation of cyclooctene. Journal of Physics and Chemistry of Solids, 68(10): 1872-1880. doi:10.1016/j.jpcs.2007.05.012
  31. Omwoma, S., Chen, W., Tsunashima, R., Song, Y.F. (2014). Recent advances on polyoxometalates intercalated layered double hydroxides: From synthetic approaches to functional material applications. Coordination Chemistry Reviews. doi:10.1016/j.ccr.2013.08.039
  32. Granados-Reyes, J., Salagre, P., Cesteros, Y. (2017). Effect of the preparation conditions on the catalytic activity of calcined Ca/Al-layered double hydroxides for the synthesis of glycerol carbonate. Applied Catalysis A: General, 536: 9-17. doi:10.1016/j.apcata.2017.02.013
  33. Lesbani, A., Kawamoto, R., Uchida, S., Mizuno, N. (2008). Control of structures and sorption properties of ionic crystals of A2[Cr3O(OOCC2H5)6(H2O)3]2[alpha-SiW12O40] (A = Na, K, Rb, NH4, Cs. Inorganic chemistry, 47(8): 3349-3357. doi:10.1021/ic702333w
  34. Lesbani, A., Hensen, H., Taher, T., Hidayati, N., Mohadi, R., Andreas, R. (2018). Intercalation of Zn/Al layered double hydroxides with Keggin ion as adsorbent of cadmium (II). In AIP Conference Proceedings (Vol. 2026, p. 20011).
  35. Mahjoubi, F.Z., Khalidi, A., Abdennouri, M., Barka, N. (2017). Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulphate ions: Synthesis, characterisation and dye removal properties. Journal of Taibah University for Science, 11(1): 90-100. doi:10.1016/j.jtusci.2015.10.007
  36. Chang, C.H., Franses, E.I. (1992). Modified Langmuir-Hinselwood kinetics for dynamic adsorption of surfactants at the air/water interface. Colloids and Surfaces, 69(2): 189-201. doi:10.1016/0166-6622(92)80230-Y