Removal of Iron(II) Using Intercalated Ca/Al Layered Double Hydroxides With [-SiW12O40]4-

Tarmizi Taher -  Environmental Science Study, Graduate Program, Universitas Sriwijaya, Indonesia
Mikha Meilinda Christina -  Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Sriwijaya, Indonesia
Muhammad Said -  Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Sriwijaya, Indonesia
Nurlisa Hidayati -  Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Sriwijaya, Indonesia
Ferlinahayati Ferlinahayati -  Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Sriwijaya, Indonesia
*Aldes Lesbani -  Department of Chemistry, Faculty of Mathematic and Natural Sciences, Universitas Sriwijaya Environmental Science Study, Graduate Program, Universitas Sriwijaya, Indonesia
Received: 1 Jul 2018; Published: 1 Aug 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Ca/Al layered double hydroxides (LDH) was synthesized by co-precipitation method at pH 11 at room temperature following calcination at 800 ºC. Synthesized Ca/Al LDH was intercalated with Keggin ion [a-SiW12O40]4- to form intercalated Ca/Al LDH. Characterization was performed using powder X-Ray and FT-IR analyses. Ca/Al LDH and intercalated Ca/Al LDH was used as an adsorbent of iron(II) in an aqueous medium. The adsorption process was studied by kinetic and thermodynamic studies. The results showed that Ca/Al LDH has layered structures which were indicated at diffraction 2θ at 20o. Diffraction 2θ at 30-40o from intercalated Ca/Al LDH shows [a-SiW12O40]4-  was successfully conducted. Adsorption of iron(II) on LDH showed that intercalated Ca/Al LDH has slightly higher adsorption capacity than LDH without intercalation. Copyright © 2019 BCREC Group. All rights reserved

Received: 1st July 2018; Revised: 5th November 2018; Accepted: 9th November 2018; Available online: 8th April 2019; Published regularly: 1st August 2019

How to Cite: Taher, T., Christina, M.M., Said, M., Hidayati, N, Ferlinahayati, F., Lesbani, A. (2019). Removal of Iron(II) Using Intercalated Ca/Al Layered Double Hydroxides with [α-SiW12O40]4-. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (2): xxx-xxx (doi:10.9767/



Other format:

Layered Double Hydroxides; Iron(II); Keggin Ion; Adsorption
Cover Image

Article Metrics:

Article Info
Section: Original Research Articles
Language: EN
Full Text:
Statistics: 210 21
  1. Chen, S., Wu, D. (2018). Adapting ecological risk valuation for natural resource damage assessment in water pollution. Environmental Research, 164: 85-92. doi:10.1016/j.envres.2018.01.005
  2. Wang, Q., Yang, Z. (2016). Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution, 218: 358-365. doi:10.1016/j.envpol.2016.07.011
  3. Earnhart, D. (2013). Water Pollution from Industrial Sources. In J.F.B.T.-E. of E. Shogren Natural Resource, and Environmental Economics (Ed.), (pp. 114–120). Waltham: Elsevier. doi: 10.1016/B978-0-12-375067-9.00091-7
  4. Noor, N.M., Othman, R., Mubarak, N.M., Abdullah, E.C. (2017). Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. Journal of the Taiwan Institute of Chemical Engineers, 78: 168-177. doi:10.1016/j.jtice.2017.05.023
  5. Bhunia, B., Prasad Uday, U.S., Oinam, G., Mondal, A., Bandyopadhyay, T.K., Tiwari, O. N. (2018). Characterization, genetic regulation and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal. Carbohydrate Polymers, 179: 228-243. doi:10.1016/j.carbpol.2017.09.091
  6. Tran, T.K., Chiu, K.F., Lin, C.Y., Leu, H.J. (2017). Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process. International Journal of Hydrogen Energy, 42(45): 27741-27748. doi:10.1016/j.ijhydene.2017.05.156
  7. Hermawan, A.A., Chang, J.W., Pasbakhsh, P., Hart, F., Talei, A. (2018). Halloysite nanotubes as a fine grained material for heavy metal ions removal in tropical biofiltration systems. Applied Clay Science, 160: 106-115. doi:10.1016/j.clay.2017.12.051
  8. Castro, L., Blázquez, M.L., González, F., Muñoz, J.A., Ballester, A. (2018). Heavy metal adsorption using biogenic iron compounds. Hydrometallurgy, 179: 44-51. doi:10.1016/j.hydromet.2018.05.029
  9. Sherlala, A.I.A., Raman, A.A.A., Bello, M.M., Asghar, A. (2018). A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere, 193: 1004-1017. doi:10.1016/j.chemosphere.2017.11.093
  10. Panda, L., Rath, S.S., Rao, D.S., Nayak, B.B., Das, B., Misra, P.K. (2018). Thorough understanding of the kinetics and mechanism of heavy metal adsorption onto a pyrophyllite mine waste based geopolymer. Journal of Molecular Liquids, 263: 428-441. doi:10.1016/j.molliq.2018.05.016
  11. Qiu, Q., Jiang, X., Lv, G., Chen, Z., Lu, S., Ni, M., Deng, X. (2018). Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment. Powder Technology, 335: 156-163. doi:10.1016/j.powtec.2018.05.003
  12. Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308: 438-462. doi:10.1016/j.cej.2016.09.029
  13. Taher, T., Mohadi, R., Rohendi, D., Lesbani, A. (2017). Kinetic and thermodynamic adsorption studies of congo red on bentonite. In AIP Conference Proceedings. doi:10.1063/1.4978101
  14. Tohdee, K., Kaewsichan, L., Asadullah. (2018). Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite. Journal of Environmental Chemical Engineering, 6(2): 2821-2828. doi:10.1016/j.jece.2018.04.030
  15. Anirudhan, T.S., Jalajamony, S., Sreekumari, S.S. (2012). Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalised bentonites. Applied Clay Science, 65-66: 67-71. doi:10.1016/j.clay.2012.06.005
  16. Adebowale, K.O., Unuabonah, I.E., Olu-Owolabi, B.I. (2005). Adsorption of some heavy metal ions on sulfate- and phosphate-modified kaolin. Applied Clay Science, 29(2): 145-148. doi:10.1016/j.clay.2004.10.003
  17. Mohadi, R., Hanafiah, Z., Hermansyah, H., & Zulkifli, H. (2017). Adsorption of procion red and congo red dyes using microalgae Spirulina sp. Science and Technology Indonesia, 2(4): 102-104. doi:10.26554/sti.2017.2.4.102-104
  18. Zhou, H., Jiang, Z., Wei, S. (2018). A new hydrotalcite-like absorbent FeMnMg-LDH and its adsorption capacity for Pb2+ ions in water. Applied Clay Science, 153: 29–37. doi:10.1016/j.clay.2017.11.033
  19. Wang, T., Li, C., Wang, C., & Wang, H. (2018). Biochar/MnAl-LDH composites for Cu (ΙΙ) removal from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538: 443-450. doi:10.1016/j.colsurfa.2017.11.034
  20. Said, M., Rahayu Palapa, N. (2017). Adsorption of congo red using Mg/Al hydrotalcite. Science & Technology Indonesia, 1(2): 17-21. doi:10.26554/sti.2017.2.1.17-21
  21. Mishra, G., Dash, B., Pandey, S. (2018). Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Applied Clay Science, 153: 172-186. doi:10.1016/j.clay.2017.12.021
  22. Xu, M., Bi, B., Xu, B., Sun, Z., Xu, L. (2018). Polyoxometalate-intercalated ZnAlFe-layered double hydroxides for adsorbing removal and photocatalytic degradation of cationic dye. Applied Clay Science, 157: 86–91. doi:10.1016/j.clay.2018.02.023
  23. Hasannia, S., Yadollahi, B. (2015). Zn-Al LDH nanostructures pillared by Fe substituted Keggin type polyoxometalate: Synthesis, characterization and catalytic effect in green oxidation of alcohols. Polyhedron, 99(3): 260-265. doi:10.1016/j.poly.2015.08.020
  24. Zhao, J., Huang, Q., Liu, M., Dai, Y., Chen, J., Huang, H., Wei, Y. (2017). Synthesis of functionalized MgAl-layered double hydroxides via modified mussel inspired chemistry and their application in organic dye adsorption. Journal of Colloid and Interface Science, 505: 168-177. doi:10.1016/j.jcis.2017.05.087
  25. Rahman, M.T., Kameda, T., Kumagai, S., Yoshioka, T. (2018). A novel method to delaminate nitrate-intercalated MgAl layered double hydroxides in water and application in heavy metals removal from waste water. Chemosphere, 203: 281-290. doi:10.1016/j.chemosphere.2018.03.166
  26. Chen, Y., Yao, Z., Miras, H.N., Song, Y.-F. (2015). Modular Polyoxometalate-Layered Double Hydroxide Composites as Efficient Oxidative Catalysts. Chemistry - A European Journal, 21(30): 10812-10820. doi:10.1002/chem.201501214
  27. Ma, J., Yang, M., Chen, Q., Zhang, S., Cheng, H., Wang, S., Chen, Z. (2017). Comparative study of Keggin-type polyoxometalate pillared layered double hydroxides via two synthetic routes: Characterization and catalytic behavior in green epoxidation of cyclohexene. Applied Clay Science, 150: 210-216. doi:10.1016/j.clay.2017.09.030
  28. Carriazo, D., Lima, S., Martín, C., Pillinger, M., Valente, A.A., Rives, V. (2007). Metatungstate and tungstoniobate-containing LDHs: Preparation, characterisation and activity in epoxidation of cyclooctene. Journal of Physics and Chemistry of Solids, 68(10): 1872–1880. doi:10.1016/j.jpcs.2007.05.012
  29. Omwoma, S., Chen, W., Tsunashima, R., Song, Y.-F. (2014). Recent advances on polyoxometalates intercalated layered double hydroxides: From synthetic approaches to functional material applications. Coordination Chemistry Reviews, 258-259: 58-71. doi:10.1016/j.ccr.2013.08.039
  30. Granados-Reyes, J., Salagre, P., Cesteros, Y. (2017). Effect of the preparation conditions on the catalytic activity of calcined Ca/Al-layered double hydroxides for the synthesis of glycerol carbonate. Applied Catalysis A: General, 536: 9-17. doi:10.1016/j.apcata.2017.02.013
  31. Lesbani, A., Kawamoto, R., Uchida, S., Mizuno, N. (2008). Control of Structures and Sorption Properties of Ionic Crystals of A2[Cr3O(OOCC2H5)6(H2O)3]2[α-SiW12O40] (A = Na, K, Rb, NH4, Cs, TMA). Inorganic Chemistry, 47(8): 3349-3357. doi:10.1021/ic702333w
  32. Mahjoubi, F. Z., Khalidi, A., Abdennouri, M., Barka, N. (2017). Zn-Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulphate ions: Synthesis, characterisation and dye removal properties. Journal of Taibah University for Science, 11(1): 90-100. doi:10.1016/j.jtusci.2015.10.007
  33. Chang, C. H., Franses, E. I. (1992). Modified Langmuir-Hinselwood kinetics for dynamic adsorption of surfactants at the air/water interface. Colloids and Surfaces, 69(2): 189-201. doi:10.1016/0166-6622(92)80230-Y