Removal of Iron(II) Using Intercalated Ca/Al Layered Double Hydroxides With [-SiW12O40]4-

DOI: https://doi.org/10.9767/bcrec.0.0.2880.xxx-xxx
Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 01-07-2018
Published: 25-01-2019
Section: Original Research Articles
Tell your colleagues Email the author

Ca/Al layered double hydroxides (LDH) was synthesized by co-precipitation method at pH 11 at room temperature following calcination at 800 oC. Synthesized Ca/Al LDH was intercalated with Keggin ion [α-SiW12O40]4- to form intercalated Ca/Al LDH. Characterization was performed using powder X-Ray and FTIR analyses. Ca/Al LDH and intercalated Ca/Al LDH was used as an adsorbent of iron(II) in an aqueous medium. The adsorption process was studied by kinetic and thermodynamic studies. The results showed that Ca/Al LDH has layered structures which were indicated at diffraction 2q at 20 deg. Diffraction 2q at 30-40 deg from intercalated Ca/Al LDH shows [α-SiW12O40]4-  successfully conducted. Adsorption of iron(II) on LDH showed that intercalated Ca/Al LDH has slightly higher adsorption capacity than LDH without intercalation. 

Received: 1st July 2018; Revised: 5th November 2018; Accepted: 9th November 2018

Keywords

layered double hydroxides, iron(II), Keggin ion, adsorption

  1. Aldes Lesbani  Orcid Scopus
    Department of Chemistry, Universitas Sriwijaya, Indonesia
  1. Chen, S., & Wu, D. (2018). Adapting ecological risk valuation for natural resource damage assessment in water pollution. Environmental Research, 164: 85–92. doi:https://doi.org/10.1016/j.envres.2018.01.005
  2. Wang, Q., & Yang, Z. (2016). Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution, 218: 358–365. doi:https://doi.org/10.1016/j.envpol.2016.07.011
  3. Earnhart, D. (2013). Water Pollution from Industrial Sources. In J. F. B. T.-E. of E. Shogren Natural Resource, and Environmental Economics (Ed.), (pp. 114–120). Waltham: Elsevier. doi:https://doi.org/10.1016/B978-0-12-375067-9.00091-7
  4. Noor, N. M., Othman, R., Mubarak, N. M., & Abdullah, E. C. (2017). Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. Journal of the Taiwan Institute of Chemical Engineers, 78: 168–177. doi:https://doi.org/10.1016/j.jtice.2017.05.023
  5. Bhunia, B., Prasad Uday, U. S., Oinam, G., Mondal, A., Bandyopadhyay, T. K., & Tiwari, O. N. (2018). Characterization, genetic regulation and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal. Carbohydrate Polymers, 179: 228–243. doi:https://doi.org/10.1016/j.carbpol.2017.09.091
  6. Tran, T.-K., Chiu, K.-F., Lin, C.-Y., & Leu, H.-J. (2017). Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process. International Journal of Hydrogen Energy, 42(45): 27741–27748. doi:https://doi.org/10.1016/j.ijhydene.2017.05.156
  7. Hermawan, A. A., Chang, J. W., Pasbakhsh, P., Hart, F., & Talei, A. (2018). Halloysite nanotubes as a fine grained material for heavy metal ions removal in tropical biofiltration systems. Applied Clay Science, 160: 106–115. doi:https://doi.org/10.1016/j.clay.2017.12.051
  8. Castro, L., Blázquez, M. L., González, F., Muñoz, J. A., & Ballester, A. (2018). Heavy metal adsorption using biogenic iron compounds. Hydrometallurgy, 179: 44–51. doi:https://doi.org/10.1016/j.hydromet.2018.05.029
  9. Sherlala, A. I. A., Raman, A. A. A., Bello, M. M., & Asghar, A. (2018). A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere, 193: 1004–1017. doi:https://doi.org/10.1016/j.chemosphere.2017.11.093
  10. Panda, L., Rath, S. S., Rao, D. S., Nayak, B. B., Das, B., & Misra, P. K. (2018). Thorough understanding of the kinetics and mechanism of heavy metal adsorption onto a pyrophyllite mine waste based geopolymer. Journal of Molecular Liquids, 263: 428–441. doi:https://doi.org/10.1016/j.molliq.2018.05.016
  11. Qiu, Q., Jiang, X., Lv, G., Chen, Z., Lu, S., Ni, M., … Deng, X. (2018). Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment. Powder Technology, 335: 156–163. doi:https://doi.org/10.1016/j.powtec.2018.05.003
  12. Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308: 438–462. doi:https://doi.org/10.1016/j.cej.2016.09.029
  13. Taher, T., Mohadi, R., Rohendi, D., & Lesbani, A. (2017). Kinetic and thermodynamic adsorption studies of congo red on bentonite. In AIP Conference Proceedings. doi:10.1063/1.4978101
  14. Tohdee, K., Kaewsichan, L., & Asadullah. (2018). Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite. Journal of Environmental Chemical Engineering, 6(2): 2821–2828. doi:https://doi.org/10.1016/j.jece.2018.04.030
  15. Anirudhan, T. S., Jalajamony, S., & Sreekumari, S. S. (2012). Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalised bentonites. Applied Clay Science, 65–66: 67–71. doi:https://doi.org/10.1016/j.clay.2012.06.005
  16. Adebowale, K. O., Unuabonah, I. E., & Olu-Owolabi, B. I. (2005). Adsorption of some heavy metal ions on sulfate- and phosphate-modified kaolin. Applied Clay Science, 29(2): 145–148. doi:https://doi.org/10.1016/j.clay.2004.10.003
  17. Mohadi, R., Hanafiah, Z., Hermansyah, H., & Zulkifli, H. (2017). Adsorption of procion red and congo red dyes using microalgae Spirulina sp. Science and Technology Indonesia, 2(4): 102–104. doi:10.26554/sti.2017.2.4.102-104
  18. Zhou, H., Jiang, Z., & Wei, S. (2018). A new hydrotalcite-like absorbent FeMnMg-LDH and its adsorption capacity for Pb2+ ions in water. Applied Clay Science, 153: 29–37. doi:https://doi.org/10.1016/j.clay.2017.11.033
  19. Wang, T., Li, C., Wang, C., & Wang, H. (2018). Biochar/MnAl-LDH composites for Cu (ΙΙ) removal from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538: 443–450. doi:https://doi.org/10.1016/j.colsurfa.2017.11.034
  20. Said, M., & Rahayu Palapa, N. (2017). Adsorption of congo red using Mg/Al hydrotalcite. Science & Technology Indonesia, 1(2): 17–21. doi:10.26554/sti.2017.2.1.17-21
  21. Mishra, G., Dash, B., & Pandey, S. (2018). Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Applied Clay Science, 153(October 2017): 172–186. doi:10.1016/j.clay.2017.12.021
  22. Xu, M., Bi, B., Xu, B., Sun, Z., & Xu, L. (2018). Polyoxometalate-intercalated ZnAlFe-layered double hydroxides for adsorbing removal and photocatalytic degradation of cationic dye. Applied Clay Science, 157(November 2017): 86–91. doi:10.1016/j.clay.2018.02.023
  23. Hasannia, S., & Yadollahi, B. (2015). Zn-Al LDH nanostructures pillared by Fe substituted Keggin type polyoxometalate: Synthesis, characterization and catalytic effect in green oxidation of alcohols. Polyhedron, 99(3): 260–265. doi:10.1016/j.poly.2015.08.020
  24. Zhao, J., Huang, Q., Liu, M., Dai, Y., Chen, J., Huang, H., … Wei, Y. (2017). Synthesis of functionalized MgAl-layered double hydroxides via modified mussel inspired chemistry and their application in organic dye adsorption. Journal of Colloid and Interface Science, 505: 168–177. doi:https://doi.org/10.1016/j.jcis.2017.05.087
  25. Rahman, M. T., Kameda, T., Kumagai, S., & Yoshioka, T. (2018). A novel method to delaminate nitrate-intercalated MgAl layered double hydroxides in water and application in heavy metals removal from waste water. Chemosphere, 203: 281–290. doi:https://doi.org/10.1016/j.chemosphere.2018.03.166
  26. Chen, Y., Yao, Z., Miras, H. N., & Song, Y.-F. (2015). Modular Polyoxometalate-Layered Double Hydroxide Composites as Efficient Oxidative Catalysts. Chemistry - A European Journal, 21(30): 10812–10820. doi:10.1002/chem.201501214
  27. Ma, J., Yang, M., Chen, Q., Zhang, S., Cheng, H., Wang, S., … Chen, Z. (2017). Comparative study of Keggin-type polyoxometalate pillared layered double hydroxides via two synthetic routes: Characterization and catalytic behavior in green epoxidation of cyclohexene. Applied Clay Science, 150(September): 210–216. doi:10.1016/j.clay.2017.09.030
  28. Carriazo, D., Lima, S., Martín, C., Pillinger, M., Valente, A. A., & Rives, V. (2007). Metatungstate and tungstoniobate-containing LDHs: Preparation, characterisation and activity in epoxidation of cyclooctene. Journal of Physics and Chemistry of Solids, 68(10): 1872–1880. doi:10.1016/j.jpcs.2007.05.012
  29. Omwoma, S., Chen, W., Tsunashima, R., & Song, Y.-F. (2014). Recent advances on polyoxometalates intercalated layered double hydroxides: From synthetic approaches to functional material applications. Coordination Chemistry Reviews, 258–259: 58–71. doi:https://doi.org/10.1016/j.ccr.2013.08.039
  30. Granados-Reyes, J., Salagre, P., & Cesteros, Y. (2017). Effect of the preparation conditions on the catalytic activity of calcined Ca/Al-layered double hydroxides for the synthesis of glycerol carbonate. Applied Catalysis A: General, 536: 9–17. doi:https://doi.org/10.1016/j.apcata.2017.02.013
  31. Lesbani, A., Kawamoto, R., Uchida, S., & Mizuno, N. (2008). Control of Structures and Sorption Properties of Ionic Crystals of A2[Cr3O(OOCC2H5)6(H2O)3]2[α-SiW12O40] (A = Na, K, Rb, NH4, Cs, TMA). Inorganic Chemistry, 47(8): 3349–3357. doi:10.1021/ic702333w
  32. Mahjoubi, F. Z., Khalidi, A., Abdennouri, M., & Barka, N. (2017). Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulphate ions: Synthesis, characterisation and dye removal properties. Journal of Taibah University for Science, 11(1): 90–100. doi:10.1016/j.jtusci.2015.10.007
  33. Chang, C. H., & Franses, E. I. (1992). Modified Langmuir—Hinselwood kinetics for dynamic adsorption of surfactants at the air/water interface. Colloids and Surfaces, 69(2): 189–201. doi:https://doi.org/10.1016/0166-6622(92)80230-Y