Fischer-Tropsch Synthesis over Unpromoted Co/ɣ-Al2O3 Catalyst: Effect of Activation with CO Compared to H2 on Catalyst Performance

Phathutshedzo Rodney Khangale -  Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg , Doornfontein 2028, South Africa
Reinout Meijboom -  Department of Chemistry, University of Johannesburg , P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
*Kalala Jalama -  Department of Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg , Doornfontein 2028, South Africa
Received: 9 Apr 2018; Revised: 21 Aug 2018; Accepted: 27 Aug 2018; Published: 15 Apr 2019; Available online: 25 Jan 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Abstract

The effect of activating Co/Al2O3 catalyst by diluted CO or H2 on catalyst performance for Fischer-Tropsch reaction was investigated. The catalyst was prepared by incipient wetness impregnation of the support and characterized using BET N2 physisorption, SEM, and XRD analyses. The reduction behavior of the catalyst in presence of CO and H2 individually was evaluated using TPR analyses. The data reveal that CO activates Co/Al2O3 catalyst at a lower temperature than H2 and produces a catalyst with higher rate for liquid product formation. It also leads to higher methane selectivity probably due to some cobalt carbide formation. Copyright © 2019 BCREC Group. All rights reserved 

Keywords
Co/Al2O3 catalyst; Fischer-Tropsch; Activation with CO.

Article Metrics:

  1. Steynberg, A.P. (2004). Introduction to fischer-tropsch technology. In Studies in Surface Science and Catalysis, 152: 1-63.
  2. Zhang, Y., Wei, D., Hammache, S., Goodwin Jr, J.G. (1999). Effect of water vapor on the reduction of Ru-promoted Co/Al2O3. Journal of Catalysis, 188(2): 281-290.
  3. Zsoldos, Z., Guczi, L. (1992). Structure and catalytic activity of alumina supported platinum-cobalt bimetallic catalysts. 3. Effect of treatment on the interface layer. The Journal of Physical Chemistry, 96(23): 9393-9400..
  4. Kogelbauer, A., Goodwin Jr, J.G., Oukaci, R. (1996). Ruthenium Promotion of Co/Al2O3 Fischer-Tropsch Catalysts. Journal of Catalysis, 160(1): 125-133.
  5. Das, T.K., Jacobs, G., Patterson, P.M., Conner, W.A., Li, J., Davis, B.H. (2003). Fischer–Tropsch synthesis: characterization and catalytic properties of rhenium promoted cobalt alumina catalysts. Fuel, 82(7): 805-815.
  6. Jalama, K., Coville, N.J., Xiong, H., Hildebrandt, D., Glasser, D., Taylor, S., Hutchings, G.J. (2011). A comparison of Au/Co/Al2O3 and Au/Co/SiO2 catalysts in the Fischer-Tropsch reaction. Applied Catalysis A: General, 395(1-2): 1-9.
  7. Jalama, K., Kabuba, J., Xiong, H., Jewell, L. L. (2012). Co/TiO2 Fischer-Tropsch catalyst activation by synthesis gas. Catalysis Communications, 17: 154-159.
  8. Jalama, K. (2016). Fischer–Tropsch synthesis over Co/TiO2 catalyst: Effect of catalyst activation by CO compared to H2. Catalysis Communications, 74: 71-74.
  9. Pan, Z., Bukur, D.B. (2011). Fischer–Tropsch synthesis on Co/ZnO catalyst - Effect of pretreatment procedure. Applied Catalysis A: General, 404(1-2): 74-80.
  10. Jacobs, G., Das, T.K., Zhang, Y., Li, J., Racoillet, G., Davis, B.H. (2002). Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Applied Catalysis A: General, 233(1-2): 263-281.
  11. Liu, Y., Edouard, D., Nguyen, L.D., Begin, D., Nguyen, P., Pham, C., Pham-Huu, C. (2013). High performance structured platelet milli-reactor filled with supported cobalt open cell SiC foam catalyst for the Fischer–Tropsch synthesis. Chemical engineering journal, 222: 265-273.
  12. Storsæter, S., Borg, Ø., Blekkan, E.A., Holmen, A. (2005). Study of the effect of water on Fischer–Tropsch synthesis over supported cobalt catalysts. Journal of Catalysis, 231(2): 405-419.
  13. Borg, Ø., Eri, S., Blekkan, E.A., Storsæter, S., Wigum, H., Rytter, E., Holmen, A. (2007). Fischer–Tropsch synthesis over γ-alumina-supported cobalt catalysts: effect of support variables. Journal of Catalysis, 248(1): 89-100.
  14. Ma, W., Jacobs, G., Ji, Y., Bhatelia, T., Bukur, D.B., Khalid, S., Davis, B.H. (2011). Fischer–Tropsch synthesis: Influence of CO conversion on selectivities, H2/CO usage ratios, and catalyst stability for a Ru promoted Co/Al2O3 catalyst using a slurry phase reactor. Topics in Catalysis, 54(13-15): 757.
  15. Ma, W., Jacobs, G., Keogh, R.A., Bukur, D.B., Davis, B.H. (2012). Fischer–Tropsch synthesis: Effect of Pd, Pt, Re, and Ru noble metal promoters on the activity and selectivity of a 25% Co/Al2O3 catalyst. Applied Catalysis A: General, 437: 1-9.
  16. Mohandas, J.C., Gnanamani, M.K., Jacobs, G., Ma, W., Ji, Y., Khalid, S., Davis, B.H. (2011). Fischer-Tropsch synthesis: characterization and reaction testing of cobalt carbide. ACS Catalysis, 1(11): 1581-1588.
  17. Yang, J., Jacobs, G., Jermwongratanachai, T., Pendyala, V.R.R., Ma, W., Chen, D., Davis, B. H. (2014). Fischer-Tropsch synthesis: impact of H2 or CO activation on methane selectivity. Catalysis letters, 144(1): 123-132.
  18. Ducreux, O., Rebours, B., Lynch, J., Roy-Auberger, M., Bazin, D. (2009). Microstructure of supported cobalt Fischer-Tropsch catalysts. Oil & Gas Science and Technology-Revue de l'IFP, 64(1): 49-62.
  19. Karaca, H., Safonova, O.V., Chambrey, S., Fongarland, P., Roussel, P., Griboval-Constant, A., Khodakov, A.Y. (2011). Structure and catalytic performance of Pt-promoted alumina-supported cobalt catalysts under realistic conditions of Fischer–Tropsch synthesis. Journal of Catalysis, 277(1): 14-26.
  20. Moyo, M., Motchelaho, M.A., Xiong, H., Jewell, L.L., Coville, N.J. (2012). Promotion of Co/carbon sphere Fischer–Tropsch catalysts by residual K and Mn from carbon oxidation by KMnO4. Applied Catalysis A: General, 413: 223-229.