Mesoporous Co3O4 as a New Catalyst for Allylic Oxidation of Cyclohexene

*Hajer Azzi orcid  -  Centre Universitaire de Ain Témouchent, Institut des Sciences et de la Technologie, Algeria
I. Rekkab-Hammoumraoui  -  Laboratoire de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, Algeria
L. Chérif-Aouali  -  Laboratoire de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, Algeria
A. Choukchou-Braham  -  Laboratoire de Catalyse et Synthèse en Chimie Organique, Université de Tlemcen, Algeria
Received: 30 Mar 2018; Revised: 24 Sep 2018; Accepted: 8 Oct 2018; Published: 15 Apr 2019; Available online: 25 Jan 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

Mesoporous cobalt oxide was investigated for the liquid phase oxidation of cyclohexene using tertiobutylhydroperoxide (TBHP) as an oxidant. The results were compared with several series of supported cobalt catalysts to study the influence of the cobalt loading and solvents on the overall conversion and selectivity. Mesoporous cobalt was synthesized through the nanocasting route using siliceous SBA-15 mesoporous material as a hard template and cobalt nitrate as the cobalt oxide precursor. Supported cobalt oxide catalysts (Co/MxOy) were synthesized by the impregnation method using two loadings (1 and 5 wt.%) and Al2O3, TiO2, and ZrO2 as supports. Samples were characterised by means: elemental analysis, X-ray powder Diffraction (XRD), BET (surface area), UV-Vis DR Spectroscopy, and MET. The results obtained showed that the cobalt oxide retains the mesoporous structure of SBA-15, and in all Co/MxOy, crystalline Co3O4 and CoO phases are observed. The mesoporous cobalt oxide is more active than the supported cobalt catalysts in the allylic oxidation of cyclohexene, with a conversion of 78 % of cyclohexene and 43.3 % selectivity toward 2-cyclohexene-1-ol. The highest activity of mesoporous cobalt oxide could be ascribed to its largest surface area. Furthermore, Co3O4 has both Lewis and Brönsted acidic sites whereas Co/MxOy has only Lewis acidic sites, which could also explain its superior catalytic activity. Moreover, mesoporous cobalt oxide was more stable than supported cobalt catalysts. Therefore, this catalyst is promising for allylic oxidation of alkenes.  Copyright © 2019 BCREC Group. All rights reserved


Keywords: Mesoporous Co3O4; Supported Cobalt; Cyclohexene; Allylic Oxidation

Article Metrics:

  1. Gökçe, S., Saka, E.T., Bıyıklıoğlu; Z., Kantekin, H. (2013). Synthesis, Characterization of Metal-Free, Metallophthalocyanines and Catalytic Activity of Cobalt Phthalocyanine in Cyclohexene Oxidation. Synthetic Metals, 176: 108-115.
  2. Murphy, E.F., Mallat, T., Baiker, A. (2000). Allylic Oxofunctionalization of Cyclic Olefins with Homogeneous and Heterogeneous Catalysts. Catalysis Today, 57: 115-126.
  3. Silva, F.P., Jacinto, M.J., Landers, R., Rossi, L.M. (2011). Selective Allylic Oxidation of Cyclohexene by a Magnetically Recoverable Cobalt Oxide Catalyst. Catalysis Letters, 141: 432-437.
  4. Dali, A., Rekkab-Hammoumraoui, I., Choukchou-Braham, A., Bachir, R. (2015). Allylic Oxidation of Cyclohexene over Ruthenium-Doped Titanium-Pillared Clay, RSC Advances, 5: 29167-29178.
  5. Luque, R., Badamali, S.K., Clark, J.H., Fleming, M., Macquarrie, D.J. (2008). Controlling Selectivity in Catalysis: Selective Greener Oxidation of Cyclohexene under Microwave Conditions. Applied Catalysis A: General, 341: 154-159.
  6. Choi, B.G., Song, R., Nam, W., Jeong, B. (2005). Iron Porphyrins Anchored to a Thermosensitive Polymeric Core-Shell Nanosphere as a Thermotropic Catalyst. Chemical Communications, 0: 2960-2962.
  7. Mukherjee, S., Samanta, S., Bhaumik, A., Ray, B.C. (2006). Mechanistic Study of Cyclohexene Oxidation and Its Use in Modification of Industrial Waste Organics. Applied Catalysis B: Environmental, 68: 12-20.
  8. Serwicka, E.M., Połtowicz, J., Bahranowski, K., Olejniczak, Z., Jones, W. (2004). Cyclohexene Oxidation by Fe-, Co-, and Mn-Metalloporphyrins Supported on Aluminated Mesoporous silica. Applied Catalysis A: General, 275: 9-14.
  9. Bhattacharjee, S., Anderson, J.A. (2006). Comparison of the Epoxidation of Cyclohexene, Dicyclopentadiene and 1,5-Cyclooctadiene over LDH Hosted Fe and Mn Sulfonato-Salen Complexes. Journal of Molecular Catalysis A: Chemical, 249: 103-110.
  10. Samantaray, S.K., Parida, K. (2005). Amine-Modified Titania–Silica Mixed Oxides: 1. Effect of Amine Concentration and Activation Temperature towards Epoxidation of Cyclohexene. Catalysis Communications, 6: 578-581.
  11. Anand, C., Srinivasu, P., Mane, G.P., Talapaneni, S.N., Benzigar, M.R., Vishnu Priya, S., Al-deyab, S.S., Sugi, Y., Vinu, A. (2013). Direct Synthesis and Characterization of Highly Ordered Cobalt Substituted KIT-5 with 3D Nanocages for Cyclohexene Epoxidation. Microporous and Mesoporous Materials, 167: 146-154.
  12. Habibi, D., Faraji, A.R., Arshadi, M., Heydari, S., Gil, A. (2013). Efficient Catalytic Systems Based on Cobalt for Oxidation of Ethylbenzene, Cyclohexene and Oximes in the Presence of N-hydroxyphthalimide. Applied Catalysis A: General, 466: 282-292.
  13. Mahdavi, V., Hasheminasab, H.R. (2015). Liquid-Phase Efficient Oxidation of Cyclohexane over Cobalt Promoted VPO Catalyst using Tert-Butylhydroperoxide. Journal of the Taiwan Institute of Chemical Engineers, 51: 53-62.
  14. Salavati-Niasari, M., Hassani-Kabutarkhani, M., Davar, F. (2006). Alumina-supported Mn(II), Co(II), Ni(II) and Cu(II) N,N-Bis(salicylidene)-2,2-dimethylpropane-1,3-diamine Complexes: Synthesis, Characterization and Catalytic Oxidation of Cyclohexene with Tert-Butylhydroperoxide and Hydrogen Peroxide. Catalysis Communications, 7: 955-962.
  15. Zhen, M., Zhou, B., Ren, Y. (2012). Crystalline Mesoporous Transition Metal Oxides: Hard-Templating Synthesis and Application in Environmental Catalysis. Frontiers of Environmental Science & Engineering, 7: 341-355.
  16. Gu, D., Jia, C.J., Weidenthaler, C., Bongard, H.J., Spliethoff, B., Schmidt, W., Schuth, F. (2015). Highly Ordered Mesoporous Cobalt-Containing Oxides: Structure, Catalytic Properties, and Active Sites in Oxidation of Carbon Monoxide. Journal of the American Chemical Society, 137: 11407-11418.
  17. Yue, W., Zhou, W. (2007) Synthesis of Porous Single Crystals of Metal Oxides via a Solid-Liquid Route. Chemistry of Materials, 19: 2359-2363.
  18. Zhao, D., Feng, J., Huo, Q., Melosh, N., Frederickson G.H., Chmelka, B.F., Stucky, G.D. (1998). Triblock Copolymer Syntheses of Mesoporous silica with Periodic 50 to 300 Angstrom Pores. Science, 279: 548-552.
  19. Rekkab-Hammoumraoui, I., Choukchou-Braham, A., Pirault-Roy, L., Kappenstein, C. (2011). Catalytic Oxidation of Cyclohexane to Cyclohexanone and Cyclohexanol by Tert-Butyl Hydroperoxide over Pt/Oxide Catalysts. Bulletin of Materials Science, 34: 1127-1135.
  20. Azzi, H., Bendahou, K., Cherif-Aouali, L., Hamidi, F., Siffert, S., Bengueddach, A., Aboukais, A. (2012). Total Oxidation of Toluene over Pd/Mesoporous Materials Catalysts. Chemistry Today, 30: 28-31.
  21. Bendahou, K., Cherif, L., Tidahy, H. L., Benaïssa, H., Aboukaïs, A. (2008). The Effect of the Use of Lanthanum-Doped Mesoporous SBA-15 on the Performance of Pt/SBA-15 and Pd/SBA-15 Catalysts for Total Oxidation of Toluene. Applied Catalysis A: General, 351: 82–87.
  22. Yu, R., Feng, J., Peter G.B. (2009). Tailoring the Pore Size/Wall Thickness of Mesoporous Transition Metal Oxides. Microporous and Mesoporous Materials, 121: 90–94 .
  23. Yunsheng, X., Hongxing, D., Haiyan, J., Lei, Z. (2010). Three-Dimensional Ordered Mesoporous Cobalt Oxides: Highly Active Catalysts for the Oxidation of Toluene and Methanol. Catalysis Communications, 11: 1171–1175.
  24. Jan, R., Gu¨nter, K., Michael, T. (2006). Synthesis of Mesoporous Magnesium Oxide by CMK-3 Carbon Structure Replication. Chemistry of Materials, 18: 4151- 4156
  25. Belaidi, N., Bedrane, S., Choukchou-Braham, A., Bachir, R. (2015). Novel Vanadium-Chromium-Bentonite Green Catalysts for Cyclohexene Epoxidation. Applied Clay Science, 107: 14-20
  26. Jankovic, L. (2003). Metal Cation-Exchanged Montmorillonite Catalyzed Protection of Aromatic Aldehydes with Ac2O. Journal of Catalysis, 218: 227-33.
  27. Azzi, A., Cherif-Aouali, L., Siffert, S., Royer, S., Aissat, A., Cousin, R., Pronier, S., Bengueddach, A. (2014). The Effect of the Nature of Support on the Performance of Gold Supported Catalysts for Total Oxidation of Toluene. Topics in Chemistry and Material Science, 7: 84-91.
  28. Bao, A., Liew, K., Li, J. (2009). Fischer–Tropsch Synthesis on CaO-Promoted Co/Al2O3 Catalysts. Journal of Molecular Catalysis A: Chemical, 304: 47-51.
  29. Chen, H., Wang, B., Ma, H., Cui, X. (2008). Oxidation and Isomerization of Cyclohexane Catalyzed by SO42-/Fe2O3-CoO under Mild Condition. Journal of Hazardous Materials, 150: 300-307.
  30. Shim, H.S., Shinde, V.R., Kim, H.J., Sung, Y.E., Kim, W.B. (2008). Porous Cobalt Oxide Thin Films from Low Temperature Solution Phase Synthesis for Electrochromic Electrode. Thin Solid Films, 516: 8573-8578.
  31. Jongsomjit, B., Panpranot, J., Goodwin Jr., J.G. (2001). Co-Support Compound Formation in Alumina-Supported Cobalt Catalysts. Journal of Catalysis, 204: 98-109.
  32. Ataloglou, T., Vakros, J., Bourikas, K., Fountzoula, C., Kordulis, C., Lycourghiotis, A. (2005). Influence of the Preparation Method on the Structure–Activity of Cobalt Oxide Catalysts Supported on Alumina for Complete Benzene Oxidation. Applied Catalysis B: Environmental, 57: 299-312.
  33. Okamoto, Y., Nagata, K., Adachi, T., Imanaka, T., Inamura, K., Takyu, T. (1991). Preparation and Characterization of Highly Dispersed Cobalt Oxide and Sulfide Catalysts Supported on SiO2. The Journal of Physical Chemistry, 95: 310-319.
  34. Sun, H., Liang, H., Zhou, G., Wang, S. (2013). Supported Cobalt Catalysts by One-Pot Aqueous Combustion Synthesis for Catalytic Phenol Degradation. Journal of Colloid and Interface Science, 394: 394-400.
  35. Khodakov, A.Y., Griboval-Constant, A., Bechara, R., Zholobenko, V.L. (2002). Pore Size Effects in Fischer Tropsch Synthesis over Cobalt-Supported Mesoporous Silicas. Journal of Catalysis, 206: 230-241.
  36. Todorova, S., Pârvulescu, V., Kadinov, G., Tenchev, K., Somacescu, S., Su, B.L. (2008). Metal States in Cobalt- and Cobalt–Vanadium-Modified MCM-41 Mesoporous Silica Catalysts and their Activity in Selective Hydrocarbons Oxidation. Microporous and Mesoporous Materials, 113: 22-30.
  37. Ataloglou, T., Fountzoula, C., Bourikas, K., Vakros, J., Lycourghiotis, A., Kordulis, C. (2005). Cobalt Oxide/γ-Alumina Catalysts Prepared by Equilibrium Deposition Filtration: The Influence of the Initial Cobalt Concentration on the Structure of the Oxide Phase and the Activity for Complete Benzene Oxidation. Applied Catalysis A: General, 288: 1-9.
  38. Yuan, Z.Y., Chen, T.H., Wang, J.Z., Li, H.X. (2001). Synthesis and Characterization of Silicon and Cobalt Substituted Mesoporous Aluminophosphates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 179: 253-259.
  39. Das, T., Deo, G. (2011). Synthesis, Characterization and In Situ DRIFTS during the CO2 Hydrogenation Reaction over Supported Cobalt Catalysts. Journal of Molecular Catalysis A: Chemical, 350: 75-82.
  40. Solsona, B., Davies, T.E., Garcia, T., Vázquez, I., Dejoz, A., Taylor, S.H. (2008). Total Oxidation of Propane using Nanocrystalline Cobalt Oxide and Supported Cobalt Oxide Catalysts. Applied Catalysis B: Environmental, 84: 176-184.
  41. Das, T., Deo, G. (2012). Effects of Metal Loading and Support for Supported Cobalt Catalyst. Catalysis Today, 198: 116-124
  42. Trigueiro, F.E., Ferreira, C.M., Volta, J.C., Gonzalez, W.A., Pries de Oliveria, P.G. (2006). Effect of Niobium Addition to Co/γ-Al2O3 Catalyst on Methane Combustion. Catalysis Today, 118: 425-32.
  43. El-Korso, S., Rekkab, I., Choukchou-Braham, A., Bedrane, S., Pirault-Roy, L., Kappenstein, C. (2012). Synthesis of Vanadium Oxides 5 wt.% VO2–MxOy by Sol–Gel Process and Application in Cyclohexene Epoxidation. Bulletin of Materials Science, 35: 1187-1194.
  44. El-Korso, S., Khaldi, I., Bedrane, S., Choukchou-Braham, A., Thibault-Starzyk, F., Bachir, R. (2014). Liquid Phase Cyclohexene Oxidation over Vanadia Based Catalysts with Tert-Butyl Hydroperoxide: Epoxidation versus Allylic Oxidation. Journal of Molecular Catalysis A: Chemical, 394: 89-96.
  45. Ziolek, M. (2003). Niobium-Containing Catalysts-The State of the Art. Catalysis Today, 78: 47-64.
  46. Martínez-Méndez, S., Henríquez, Y., Domínguez, O., D’Ornelas, L., Krentzien, H. (2006). Catalytic Properties of Silica Supported Titanium, Vanadium and Niobium Oxide Nanoparticles towards the Oxidation of Saturated and Unsaturated Hydrocarbons. Journal of Molecular Catalysis A: Chemical, 252: 226-234.
  47. Rothenberg, G., Wiener, H., Sasson, Y. (1998). Pyridines as Bifunctional Co-Catalysts in the CrO3-Catalyzed Oxygenation of Olefins by T-Butyl Hydroperoxide. Journal of Molecular Catalysis A: Chemical, 136: 253-262.
  48. Bonneviot, L., Beland, F., Danumah, C., Giasson, S., Kaliaguine, S. (1998). Mesoporous Molecular Sieves, Press
  49. Salavati-Niasari, M., Elzami, M.R., Mansournia, M.R., Hydarzadeh, S. (2004). Alumina-Supported Vanadyl Complexes as Catalysts for the CH Bond Activation of Cyclohexene with Tert-Butylhydroperoxide. Journal of Molecular Catalysis A: Chemical, 221: 169-175.
  50. Ganji, S., Bukya, P., Vakati, V., Raoa, K.S.R., Burri, D.R. (2013). Highly Efficient and Expeditious PdO/SBA-15 Catalysts for Allylic Oxidation of Cyclohexene to Cyclohexenone. Catalysis Science & Technology, 3: 409-414.
  51. Ghiaci, M., Aghabarari, B., Botelho do Rego, A.M., Ferraria, A.M., Habibollahi, S. (2011). Efficient Allylic Oxidation of Cyclohexene Catalyzed by Trimetallic Hybrid Nano-Mixed Oxide (Ru/Co/Ce). Applied Catalysis A: General, 393: 225-230.

No citation recorded.