Algerian Acid Activated Clays as Efficient Catalysts for a Green Synthesis of Solketal by Chemoselective Acetalization of Glycerol with Acetone

*Kouider Alali -  Laboratoire de Modélisation et de Méthodes de Calcul, Université Docteur Moulay Tahar , 20002, Saida, Algeria Laboratoire Chimie Physique Macromoléculaire, Département de Chimie, Faculté des Sciences Appliquées, Université Oran1 Ahmed Benbela, 31000 Oran, Algeria
Fouad Lebsir -  Laboratoire Chimie Physique Macromoléculaire, Département de Chimie, Faculté des Sciences Appliquées, Université Oran1 Ahmed Benbela , 31000 Oran, Algeria
Sondes Amri -  Laboratoire Matériaux Composites et Minéraux Argileux, Centre National des Recherches en Sciences des Matériaux, Technopole de Borj Cerdia , Soliman, 8027, Tunisia
Ali Rahmouni -  Laboratoire de Modélisation et de Méthodes de Calcul, Université Docteur Moulay Tahar , 20002, Saida, Algeria
Ezzedine Srasra -  Laboratoire Matériaux Composites et Minéraux Argileux, Centre National des Recherches en Sciences des Matériaux, Technopole de Borj Cerdia , Soliman, 8027, Tunisia
Néji Besbes -  Laboratoire Matériaux Composites et Minéraux Argileux, Centre National des Recherches en Sciences des Matériaux, Technopole de Borj Cerdia , Soliman, 8027, Tunisia
Received: 28 Mar 2018; Revised: 17 Oct 2018; Accepted: 30 Oct 2018; Published: 15 Apr 2019; Available online: 25 Jan 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image
Abstract

The production of solketal and conversion of glycerol takes a major importance in the field of the sustainability of the biodiesel industry. The synthesis of (2,2-dimethyl-1,3-dioxolan-4-yl)methanol by the acetalization of glycerol with acetone successfully applied out using various Algerian acid activated clays (maghnia-H+) under autogenous pressure and without solvent. The acid catalyst clays are prepared by an easy technique by activation with the available and low-cost Maghnia clay. The purified Maghnia clay named ALC and the resulting series of acid-activated clays AL1, AL2, AL3, and AL4 are characterized by X-ray Fluorescence (XRF) investigation, N2-adorption/desorption Brunauer–Emmett–Teller  (BET) surface area, X-rays Diffraction (XRD), Fourier Transform Infra Red (FT-IR) spectroscopy, SEM microscopy and the cation exchange capacity (CEC) with copper bisethylenediamine complex method, in order to study the effect of activation at the acid and the catalytic behaviour in the acetalization reaction. The results show a high catalytic activity whose that the yield of solketal production interest reached 95 % at a temperature of 40 °C for a reaction time of 48 hours with full selectivity and glycerol conversion reaching up to 89 %. A mechanistic is proposed to explain the chemoselective of solketal production. These results indicate the potential of this Algerian acid activated clays catalysts for the acetalization of glycerol for an environmentally benign process. Copyright © 2019 BCREC Group. All rights reserved

 

Keywords
Acetalization; Acid Activated Clay; Glycerol Conversion; Solketal; Biodiesel

Article Metrics:

  1. Nanda, S., Azargohar, R., Dalai, A.K., Kozinski, J.A. (2015). An Assessment on the Sustainability of Lignocellulosic Biomass for Biorefining. Renewable and Sustainable Energy Cs, 50: 925–941.
  2. Mota, C.J.A., da Silva, C.X.A., Rosenbach, N., Costa, J.J., da Silva, F. (2010). Glycerin Derivatives as Fuel Additives: The Addition of Glycerol/Acetone Ketal (Solketal) in Gasolines. Energy Fuels, 24: 2733–2736.
  3. Maximov, A.L. Nekhaev, A.I., Ramazanov, D.N. (2015). Ethers and Acetals, Promising Petrochemicals from Renewable Sources. Petroleum Chemistry, 55: 3–24.
  4. Huang, Z.W., Cui, F., Xue, J.J., Zuo, J.L., Chen, J., Xia, C.G. (2012). Cu/SiO2 Catalysts Prepared by Homo- and Heterogeneous Deposition–Precipitation Methods: Texture, Structure, and Catalytic Performance in the Hydrogenolysis of Glycerol to 1,2-Propanediol. Catalysis Today, 183: 42–51.
  5. Brett, G.L., He, Q., Hammond, C., Miedziak, P.J., Dimitratos, N., Sankar, M., Herzing, A.A., Conte, M., Lopez-Sanchez, J.A., Kiely, C.J., Knight, D.W., Taylor, S.H., Hutchings, G.J. (2011). Selective Oxidation of Glycerol by Highly Active Bimetallic Catalysts at Ambient Temperature under Base-Free Conditions. Angewandte Chemie International Edition, 50: 10136–10139.
  6. Ezhova, N.N., Korosteleva, I.G., Kolesnichenko, N.V., Kuz’min, A.E., Khadzhiev, S.N., Vasil’eva, M.A., Voronina, Z.D. (2012).Glycerol Carboxylation to Glycerol Carbonate in the Presence of Rhodium Complexes with Phosphine Ligands. Petroleum Chemistry, 52(2): 91–96.
  7. Liu, J., Daoutidis, P., Yang, B. (2016). Process Design and Optimization for Etherification of Glycerol with Isobutene. Chemical Engineering Science, 144: 326–335.
  8. Ilham, Z., Saka. S. (2016). Esterification of Glycerol from Biodiesel Production to Glycerol Carbonate in Non Catalytic Supercritical Dimethyl Carbonate. Springer Plus, 5: 923–928.
  9. Deutsch, J., Martin, A., Lieske, H. (2007). Investigations on Heterogeneously Catalyzed Condensations of Glycerol to Cyclic Acetals. Journal of Catalysis, 245: 428–435.
  10. Vicente, G., Melero, J.A., Morales, G., Paniagua, M., Martin, E. (2010). Acetalisation of Bio-Glycerol with Acetone to Produce Solketal over Sulfonic Mesostructured Silicas. Green Chemistry, 12: 899–907.
  11. Agirre, I., Güemez, M.B., Ugarte, A., Requies, J., Barrio, V.L., Cambra, J.F., Arias, P.L. (2013). Glycerol Acetals as Diesel Additives: Kinetic Study of the Reaction Between Glycerol and Acetaldehyde. Fuel Processing Technology, 116: 182–188.
  12. Fife, T.H., Jao, L.K. (1965). Substituent Effects in Acetal Hydrolysis. Journal of Organic Chemistry, 30: 1492–1495.
  13. Gopinath, R., Haque, S.J., Patel, B.K. (2002). Tetrabutylammonium Tribromide (TBATB) as an Efficient Generator of HBr for an Efficient Chemoselective Reagent for Acetalization of Carbonyl Compounds. Journal of Organic Chemistry, 67: 5842–5845.
  14. Mallesham, B., Sudarsanam, P., Raju, G., Reddy, B.M. (2013). Design of Highly Efficient Mo and W-promoted SnO2 Solid Acids for Heterogeneous Catalysis: Acetalization of Bio-Glycerol. Green Chemistry, 15: 478–489.
  15. Khayoon, M.S., Hameed, B.H. (2013). Solventless Acetalization of Glycerol with Acetone to Fuel Oxygenates over Ni–Zr Supported on Mesoporous Activated Carbon Catalyst. Applied Catalysis A: General, 464–465: 191–199.
  16. Ferreira, P., Fonseca, I.M., Ramos, A.M., Vital, J., Castanheiro, J.E. (2010). Valorisation of Glycerol by Condensation with Acetone over Silica-Included Heteropolyacids. Applied Catalysis B: Environmental, 98: 94–99.
  17. Li, L., Korányi, T.I., Sels, B.F., Pescarmona, P.P. (2012). Highly-Efficient Conversion of Glycerol to Solketal over Heterogeneous Lewis Acid Catalysts. Green Chemistry, 14: 1611–1619.
  18. Nanda, M.R., Yuan, Z., Qin, W., Ghaziaskar, H.S., Poirier, M.A., Xu, C.C. (2014). A New Continuous-Flow Process for Catalytic Conversion of Glycerol to Oxygenated Fuel Additive: Catalyst Screening. Applied Energy, 123: 75–81.
  19. Zhang, S., Zhao, Z., Ao, Y. (2015). Design of Highly Efficient Zn-, Cu-, Ni- and Co-promoted M-AlPO4 Solid Acids: The Acetalization of Glycerol with Acetone. Applied Catalysis A: General, 496: 32–39.
  20. Kapkowski, M., Ambrozkiewicz, W., Siudyga, T., Sitko, R., Szade, J., Klimontko, J., Balin, K., Lelatko, J., Polanski, J. (2017). Nano Silica and Molybdenum Supported Re, Rh, Ru or Ir Nanoparticles for Selective Solvent-Free Glycerol Conversion to Cyclic Acetals with Propanone and Butanone under Mild Conditions. Applied Catalysis B: Environmental, 202: 335–345.
  21. Besbes, N., Hadji, D., Mostéfai, A., Rahmouni, A., Srasra, E., Efrit, M.L. (2012). Experimental and Theoretical Investigation on the Catalytic Acetalyzation of Carbonyl Aldehydes over Acid Activated Clay: Mechanistic Study. Journal of the Tunisian Chemical Society, 14: 39–46.
  22. Hagui, W., Mostefai, A., Rahmouni, A., Efrit, M.L., Srasra, E., Besbes, N. (2015). A Green Transformation of Ketones into Dioxolanes by Tunisian Acid Activated Clay Solvent Free: Experimental and Theoretical Studies. Journal of the Tunisian Chemical Society, 17: 1–9.
  23. Mnasri, S., Besbes, N., Frini-Srasra, N., Srasra, E. (2012). Etude De L’activité Catalytique Des Argiles Pontées Aluminium, Zirconium Et Cérium Dans La Synthèse Du 2,2-Diméthyl-1,3-Dioxolane. Comptes Rendus Chimie, 15(4): 437-434.
  24. Kherroub, D., Belbachir, M., Lamouri, S., Bouhadjar, L., Chikh, K. (2018). Catalytic Activity of Maghnite-H+ in the Synthesis of Polyphenylmethylsiloxane under Mild and Solvent-free Conditions. Periodica Polytechnica Chemical Engineering. 62(2), pp. 195-201.
  25. Kherroub, D., Belbachir, M., Lamouri, S. (2018). Green Polymerization of Hexadecamethylcyclooctasiloxane Using an Algerian Proton Exchanged Clay Called Maghnite-H+, Bulletin of Chemical Reaction Engineering & Catalysis. 13(1), pp. 36-46
  26. Ayari, F., Srasra E., Ayadi, M.T. (2007). Removal of Lead, Zinc and Nickel Using Sodium Bentonite Activated Clay. Asian Journal of Chemistry, 19: 3325–3339.
  27. Bergaya, F., Vayer, M. (1997). CEC of Clays: Measurement by Adsorption of a CopperEthylendiamine Complex. Applied Clay Science, 12: 275–280.
  28. Hamdi, N., Srasra, E. (2008). Interaction of Aqueous Acidic-Fluoride Waste with Tunisian Soil. Clays and Clay Minerals, 56: 259-271.
  29. Srasra, E., Ayedi, T.M. (2000). Textural Properties of Acid Activated Glauconite. Applied Clay Science, 17: 71–84.
  30. Srasra, E., Bergaya, F., Fripiat, J. (1994). Infrared Spectroscopy Study of Tetrehedral and Octahedral Substitutions in an Interstratified Illite-Smectite Clay. Clay and Clay Minerals, 42(3): 237-241.
  31. Srasra, E., Bergaya, F., Van Damme, H., Ariguib, N.K. (1989). Surface Properties of an Activated Bentonite-Decolorisation of Rape-Seed Oils. Applied Clay Science, 4: 411–421.
  32. Burauer, S., Deming, L.S., Deming, E.W., Teller, E. (1940). On a Theory of the van der Waals Adsorption of Gases. Journal of the American Chemical Society, 62: 1723-1732.
  33. Gregg, S.H., Sing, K.S.W. (1982). Adsorption Surface Area and Porosity. Academic Press, London, 313
  34. Marton, G.I., Iancu, P., Plesu, V., Marton, A., Soriga, S.G. (2015). Sloketal- a Quantum Mecanics Study of the Reaction Mechanism of Ketalistion. Revista de Chimie-Bucharest, 66(5): 750-753.