Highly Sensitive Electrocatalytic Determination of Formaldehyde Using a Ni/Ionic Liquid Modified Carbon Nanotube Paste Electrode

DOI: https://doi.org/10.9767/bcrec.13.3.2341.529-542
Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 11-03-2018
Published: 04-12-2018
Section: Original Research Articles
Fulltext PDF Tell your colleagues Email the author

In this study, ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate was applied as additives to fabricate a novel ionic liquid/carbon nanotube paste electrode (IL/CNPE). This electrode was characterized by electrochemical impedance spectroscopy and cyclic voltammetry. Results showed that the electron transfer rate and reversibility of the electrode were increased by the ionic liquid. The morpho-logy of prepared IL/CNPE was studied by scanning electron microscopy. Nickel/ionic liquid modified carbon nanotube paste electrode (Ni/IL/CNPE) was also constructed by immersion of the IL/CNPE in nickel sulfate solution. Ionic liquid showed significant effect on the accumulation of nickel species on the surface of the electrode. Also, the values of electron transfer coefficient, charge-transfer rate constant and electrode surface coverage for Ni(II)/Ni(III) redox couple of the Ni/IL/CNPE were found to be 0.32 and 2.37×10-1 s-1 and 2.74×10-8 mol.cm-2, respectively. The Ni/IL/CNPE was applied successfully to highly efficient electrocatalytic oxidation of formaldehyde in alkaline medium. The effects of various factors on the efficiency of electrocatalytic oxidation of formaldehyde were optimized. Under the optimized condition, cyclic voltammetry of formaldehyde at the modified electrode exhibited two linear dynamic ranges in the concentration ranges of 7.00×10-6 to 9.60×10-5 mol.L-1 and 9.60×10-5 to 32.00×10-3 mol.L-1 with excellent detection limit of 9.50×10-7 mol.L-1 (3σ/slope), respectively. Also, the method was successfully applied for formaldehyde measurement in real sample. Copyright © 2018 BCREC Group. All rights reserved

Received: 11st March 2018; Revised:20th July 2018; Accepted: 28th July 2018

How to Cite: Zarei, E., Jamali, M.R., Ahmadi, F. (2018). Highly Sensitive Electrocatalytic Determination of Formaldehyde Using a Ni/Ionic Liquid Modified Carbon Nanotube Paste Electrode. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (3): 529-542 (doi:10.9767/bcrec.13.3.2341.529-542)

Permalink/DOI: https://doi.org/10.9767/bcrec.13.3.2341.529-542

 

Keywords

Nickel; Ionic Liquid; Carbon Nanotube Paste Electrode; Electrocatalytic Oxidation; Formaldehyde

  1. Ebrahim Zarei 
    Department of Basic Sciences, Farhangian University , Tehran, Iran, Islamic Republic of
  2. Mohammad Reza Jamali 
    Department of Chemistry, Payame Noor University , Tehran, Iran, Islamic Republic of
  3. Farideh Ahmadi 
    Department of Chemistry, Payame Noor University , Tehran, Iran, Islamic Republic of
  1. Norouzi, B., Sarvinehbaghi, S., Norouzi, M. (2014). Electrocatalytic Oxidation of Formaldehyde on Ni/Poly(N,N-Dimethylaniline) (Sodium Dodecylsulfate) Modified Carbon Paste Electrode in Alkaline Medium. Russian Journal of Electrochemistry, 50: 1020-1026.
  2. Gerberich, H.R., Seaman, G.C. (1994). Formaldehyde: Encyclopedia of Chemical Technology. 4th ed., vol. 11, Wiley, New York, p. 929.
  3. Patnaik, P. (1997). Handbook of Environmental Analysis: Chemical Pollutants in Air, Water, Soil, and Solid Wastes. CRC Press, Boca Raton, FL.
  4. Flyvholm, M.A., Andersen, P. (1993). Identification of Formaldehyde Releasers and Occurrence of Formaldehyde and Formaldehyde Releasers in Registered Chemical Products. American Journal of Industrial Medicine, 24: 533-552.
  5. Xie, H., Sheng, C., Chen, X., Wang, X., Li, Z., Zhou, J. (2012). Multi-Wall Carbon Nanotube Gas Sensors Modified with Amino-Group to Detect Low Concentration of Formaldehyde. Sensors and Actuators B Chemical, 168: 34-38.
  6. Del Torno-de Román, L., Alonso-Lomillo, M.A., Domínguez-Renedo, O., Merino-Sánchez, C., Merino-Amayuelas, M.P., Arcos-Martínez, M.J. (2011). Fabrication and Characterization of Disposable Sensors and Biosensors for Detection of Formaldehyde. Talanta, 86: 324-328.
  7. Zhang, Y., Zhang, M., Cai, Z., Chen, M., Cheng, F. (2012). A Novel Electrochemical Sensor for Formaldehyde Based on Palladium Nanowire Arrays Electrode in Alkaline Media. Electrochimica Acta, 68: 172-177.
  8. Yi, Q., Niu, F., Yu, W. (2011). Pd-Modified TiO2 Electrode for
  9. Electrochemical Oxidation of Hydrazine, Formaldehyde and Glucose. Thin Solid Films, 519: 3155-3161.
  10. Astuti Handayani, P., Abdullah, A., Hadiyanto, H. (2017). Biodiesel Production from Nyamplung (Calophyllum inophyllum) Oil Using Ionic Liquid as a Catalyst and Microwave Heating System. Bulletin of Chemical Reaction Engineering & Catalysis, 12: 293-298.
  11. Sivalingam, J.R., Kait, C.F., Wilfred, C.D. (2018). CeO2-TiO2 Photocatalyst: Ionic Liquid-Mediated Synthesis, Characterization, and Performance for Diisopropanolamine Visible Light Degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 13: 170-178.
  12. Buzzeo, M.C., Evans, R.G., Compton, R.G. (2004). Non‐haloaluminate Room‐ Temperature Ionic Liquids in Electrochemistry-A Review. Chem Phys Chem, 5: 1106-1120.
  13. Nishi, N., Imakura, S., Kakiuchi, T. (2006). Wide Electrochemical Window at the Interface between Water and a Hydrophobic Room-Temperature Ionic Liquid of Tetrakis 3,5-bis(Trifluoromethyl)phenyl]borate. Analytical Chemistry, 78: 2726-2731.
  14. Sun, W., Li, Y., Duan, Y., Jiao, K. (2009). Direct Electrochemistry of Guanosine on Multi-Walled Carbon Nanotubes Modified Carbon Ionic Liquid Electrode. Electrochimica Acta, 54: 4105-4110.
  15. Lang, C.M., Kim, K., Guerra, L., Kohl, P.A. (2005). Cation Electrochemical Stability in Chloroaluminate Ionic Liquids. Journal of Physical Chemistry B, 109: 19454-19462.
  16. Zanoni, M.V.B., Rogers, E.I., Hardacre, C., Compton, R.G. (2010). The Electrochemical Reduction of the Purines Guanine and Adenine at Platinum Electrodes in Several Room Temperature Ionic Liquids. Analytical Chimica Acta, 659: 115-121.
  17. Liu, H.T., He, P., Li, Z.Y., Sun, C.Y., Shi, L.H., Liu, Y., Zhu, G.Y., Li, J.H. (2005). An Ionic Liquid-Type Carbon Paste Electrode and Its Polyoxometalate-Modified Properties. Electrochemistry Communications, 7: 1357-1363.
  18. Safavi, A., Maleki, N., Farjami, F., Farjami, E. (2009). Electrocatalytic Oxidation of Formaldehyde on Palladium Nanoparticles Electrodeposited on Carbon Ionic Liquid Composite Electrode. Journal of Electroanalytical Chemistry, 626: 75-79.
  19. Ensafi, A.A., Karimi-Maleh, H. (2010). Modified Multiwall Carbon Nanotubes Paste Electrode as a Sensor for Simultaneous Determination of 6-thioguanine and Folic Acid Using Ferrocenedicarboxylic Acid as a Mediator. Journal of Electroanalytical Chemistry, 640: 75-83.
  20. Beitollahi, H., Mazloum Ardakani, M., Ganjipour, B., Naeimi, H. (2008). Novel 2,2′-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone Double-wall Carbon Nanotube Paste Electrode for Simultaneous Determination of Epinephrine, Uric Acid and Folic Acid. Biosensors and Bioelectronics, 24: 362-368.
  21. Ensafi, A.A., Taei, M., Khayamian, T., Karimi-Maleh, H., Hasanpour, F. (2010). Voltammetric Measurement of Trace Amount of Glutathione Using Multiwall Carbon Nanotubes as a Sensor and Chlorpromazine as a Mediator. Journal Solid State Electrochemistry, 14: 1415-1423.
  22. Ensafi, A.A., Khoddami, E., Rezaei, B., Karimi-Maleh, H. (2010). p-Aminophenol-Multiwall Carbon Nanotubes-TiO2 Electrode as a Sensor for Simultaneous Determination of Penicillamine and Uric Acid. Colloids and Surfaces B Biointerfaces, 81: 42-49.
  23. Wang, Z.H., Liu, J., Liang, Q.L., Wang, T.M., Luo, G. (2002). Carbon Nanotube-Modified Electrodes for the Simultaneous Determination of Dopamine and Ascorbic Acid. Analyst, 127: 653-657.
  24. Wang, J., Li, M., Shi, Z., Li, N. (2002). Direct Electrochemistry of Cytochrome c at a Glassy Carbon Electrode Modified with Single-Wall Carbon Nanotubes. Analytical Chemistry, 74: 1993-1997.
  25. Rezaei, B., Damiri, S. (2008). Voltammetric Behavior of Multi-walled Carbon Nanotubes Modified Electrode-Hexacyanoferrate(II) Electrocatalyst System as a Sensor for Determination of Captopril. Sensors and Actuators B Chemical, 134: 324-331.
  26. Wang, J., Musameh, M. (2003). Carbon Nanotube/Teflon Composite Electrochemical Sensors and Biosensors. Analytical Chemistry, 75: 2075-2079.
  27. Ensafi, A.A., Karimi-Maleh, H. (2011). Voltammetric Determination of Isoproterenol Using Multiwall Carbon Nanotubes-Ionic Liquid Paste Electrode. Drug Testing and Analysis, 3: 325-330.
  28. Raoof, J.B., Ojani, R., Nadimi, S.R. (2004). Preparation of Polypyrrole/ferrocyanide Films Modified Carbon Paste Electrode and Its Application on the Electrocatalytic Determination of Ascorbic Acid. Electrochimica Acta, 49: 271-280.
  29. Feng, J.J., Zhao, G., Xu, J.J., Chen, H.Y. (2005). Direct Electrochemistry and Electrocatalysis of Heme Proteins Immobilized on Gold Nanoparticles Stabilized by Chitosan. Analytical Biochemistry, 342: 280-286.
  30. Samadi-Maybodi, A., Nejad-Darzi, S.K.H., Ganjali, M.R., Ilkhani, H. (2013). Application of Nickel Phosphate Nanoparticles and VSB-5 in the Modification of Carbon Paste Electrode for Electrocatalytic Oxidation of Methanol. Journal Solid State Electrochemistry, 17: 2043-2048.
  31. Alidusty, F., Nezamzadeh-Ejhieh, A. (2016). Considerable Decrease in Overvoltage of Electro-catalytic Oxidation of Methanol by Modification of Carbon Paste Electrode with Cobalt(II)-clinoptilolite Nanoparticles. International Journal of Hydrogen Energy, 41: 6288-6299.
  32. Đorđević, J.S., Maksimović, V.M., Gadžurić, S.B., Trtić-Petrović, T.M. (2017). Determination of Carbendazim by an Ionic Liquid Modified Carbon Paste Electrode. Analytical Letters, 50: 1075-1090.
  33. Koper, M.T.M., Hachkar, M., Beden, B. (1996). Investigation of the Oscillatory Electro-oxidation of Formaldehyde on Pt and Rh Electrodes by Cyclic Voltammetry, Impedance Spectroscopy and the Electrochemical Quartz Crystal Microbalance. Journal of the Chemical Society, Faraday Transactions, 92: 3975-3982.
  34. Stojanovic, A., Keppler, B.K. (2012). Ionic Liquids as Extracting Agents for Heavy Metals. Separation Science and Technology, 47: 189-203.
  35. Wegner, S., Janiak, C. (2017). Metal Nanoparticles in Ionic Liquids. Topics in Current Chemistry, 375: 65-87.
  36. Neouze, M.-A. (2010). About the Interactions between Nanoparticles and Imidazolium Moieties: Emergence of Original Hybrid Materials. Journal of Materials Chemistry, 20: 9593-9607.
  37. Yevidal A.D., Figlarz, M. (1987). Textural and Structural Studies on Nickel Hydroxide Electrodes. II. Turbostratic Nickel (II) Hydroxide Submitted to Electrochemical Redox Cycling. Journal of Applied Electrochemistry, 17: 589-599.
  38. Raoof, J.B., Ojani, R., Abdi, S., Hosseini, S.R. (2012). Highly improved electrooxidation of formaldehyde on nickel/poly (o-toluidine)/Triton X-100 film modified carbon nanotube paste electrode. International Journal of Hydrogen Energy, 37: 2137-2146.
  39. Bard, A.J., Faulkner, L.R. (2001). Electrochemical Methods: Fundamentals and Applications. Wiley-Interscience, New York.
  40. Azizi, S.N., Ghasemi, S., Yazdani-Sheldarrei, H. (2013). Synthesis of Mesoporous Silica (SBA-16) Nanoparticles Using Silica Extracted from Stem Cane Ash and Its Application in Electrocatalytic Oxidation of
  41. Methanol. International Journal of Hydrogen Energy, 38: 12774-12785.
  42. Laviron, E. (1979). General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems. Journal of Electroanalytical Chemistry, 101: 19-28.
  43. Gosser, D.K.J. (1993). Cyclic Voltammetry-Simulation and Analysis of Reaction Mechanism. (Wiley-VCH, New York, USA.
  44. Nicholson, R.S., Shain, I. (1964). Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. Analytical Chemistry, 36: 706-723.
  45. Azizi, S.N., Ghasemi, S., Amiripour, F. (2016). Nickel/ P nanozeolite Modified Electrode: A New Sensor for the Detection of Formaldehyde. Sensors and Actuators B Chemical, 227: 1-10.
  46. Hassaninejad-Darzi, S.K., Rahimnejad, M., Esfidvajani, M.G. (2016). Electrocatalytic Oxidation of Formaldehyde onto Carbon Paste Electrode Modified with Nickel Decorated Nanoporous Cobalt-Nickel Phosphate Molecular Sieve for Fuel Cell. Fuel Cells, 16: 89-99.
  47. Ojani, R., Raoof, J.B., Zavvarmahalleh, S.R.H. (2009). Preparation of Ni/poly (1, 5-diaminonaphthalene)-Modified Carbon Paste Electrode; Application in Electrocatalytic Oxidation of Formaldehyde for Fuel Cells. Journal Solid State Electrochemistry, 13: 1605-1611.
  48. Raoof, J.B., Ojani, R., Abdi, S., Hosseini, S.R. (2012). Highly Improved Electrooxidation of Formaldehyde on Nickel/Poly (o-toluidine)/Triton X-100 Film Modified Carbon Nanotube Paste Electrode. International Journal of Hydrogen Energy, 37: 2137-2146.
  49. Habibi, B., Delnavaz, N. (2010). Electrocatalytic Oxidation of Formic Acid and Formaldehyde on Platinum Nanoparticles Decorated Carbon-Ceramic Substrate. International Journal of Hydrogen Energy, 35: 8831-8840.
  50. Ojani, R., Raoof, J.B., Ahmady-Khanghah, Y., Safshekan, S. (2013). Copper-Poly (2-aminodiphenylamine) Composite as Catalyst for Electrocatalytic Oxidation of Formaldehyde in Alkaline Media. International Journal of Hydrogen Energy, 38: 5457-5463.
  51. Korpan, Y.I., Gonchar, M.V., Sibirny, A.A., Martelet, C., Elskaya, A.V., Gibson, T.D., Soldatkin, A.P. (2000). Development of Highly Selective and Stable Potentiometric Sensors for Formaldehyde Determination. Biosensors and Bioelectronics, 15: 77-83.
  52. Demkiv, O., Smutok, O., Paryzhak, S., Gayda, G., Sultanor, Y., Guschin, D., Shkil, H., Schuhmann, W., Goncher, M. (2008). Reagentless Amperometric Formaldehyde-Selective Biosensors Based on the Recombinant Yeast Formaldehyde Dehydrogenase. Talanta, 76: 837-846.
  53. Ben Ali, M., Gonchar, M., Gayda, G., Paryzhak, S., Maaref, M.A., Jaffrezic-Renault, N., Korpan, Y. (2007). Formaldehyde-Sensitive Sensor Based on Recombinant Formaldehyde Dehydrogenase Using Capacitance versus Voltage Measurements. Biosensors and Bioelectronics, 22: 2790-2795.
  54. Wang, Q., Zheng, J., Zhang, H., (2012). A Novel Formaldehyde Sensor Containing AgPd Alloy Nanoparticles Electrodeposited on an Ionic Liquid-Chitosan Composite Film. Journal of Electroanalytical Chemistry, 674: 1-6.
  55. Lyles, G.R., Dowling, F.B., Blanchard, V.J. (1965) Quantitative Determination of Formaldehyde in the Parts per Hundred Million Concentration Level. Journal of the Air Pollution Control Association, 15: 106-108.