1Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus 2028, Johannesburg, South Africa
2Department of Physics, University of Johannesburg, Doornfontein Campus 2028, Johannesburg, South Africa
BibTex Citation Data :
@article{BCREC2258, author = {Madima Ntakadzeni and William Anku and Neeraj Kumar and Penny Govender and Leelakrishna Reddy}, title = {PEGylated MoS2 Nanosheets: A Dual Functional Photocatalyst for Photodegradation of Organic Dyes and Photoreduction of Chromium from Aqueous Solution}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {14}, number = {1}, year = {2019}, keywords = {Photocatalyst; Photodegradation; Photoreduction; Dyes; Chromium, MoS2}, abstract = { This article reports the synthesis of PEGylated microspheres of MoS 2 nanosheets through the hydrothermal method and its application in rhodamine B and methylene blue dyes photodegradation, and photoreduction of chromium(VI) to chromium(III) in water under illumination with visible light. The catalyst was characterized using X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infra Red (FTIR), Thermo-gravimetric Analysis (TGA), and UV-Vis spectroscopies. XRD result reveals the MoS 2 nanosheets to be present in the hexagonal phase of MoS 2 . SEM, TEM, and HRTEM images show that the synthesised sample has spherical shapes made up of several thin sheets of MoS 2 . The catalyst showed visible light responsivity with a calculated band gap of 1.92 eV. The MoS 2 nanosheets exhibited high degradation efficiency against both dyes. The RhB and MB dyes experienced degradation efficiencies of 97.30 % (RhB) and 98.05 % (MB) in 75 min 90 min, respectively. The MoS 2 photocatalyst is also observed to be effective in photocatalytic reduction of Cr(VI) and displayed 91.05% reduction of Cr(VI) to Cr(III) in 75 min. The results reveal that the synthesised MoS 2 nanosheet is a good photocatalytic material for degradation of dyes and reduction of Cr(VI) to Cr(III) in water. }, issn = {1978-2993}, pages = {142--152} doi = {10.9767/bcrec.14.1.2258.142-152}, url = {https://ejournal2.undip.ac.id/index.php/bcrec/article/view/2258} }
Refworks Citation Data :
This article reports the synthesis of PEGylated microspheres of MoS2 nanosheets through the hydrothermal method and its application in rhodamine B and methylene blue dyes photodegradation, and photoreduction of chromium(VI) to chromium(III) in water under illumination with visible light. The catalyst was characterized using X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infra Red (FTIR), Thermo-gravimetric Analysis (TGA), and UV-Vis spectroscopies. XRD result reveals the MoS2 nanosheets to be present in the hexagonal phase of MoS2. SEM, TEM, and HRTEM images show that the synthesised sample has spherical shapes made up of several thin sheets of MoS2. The catalyst showed visible light responsivity with a calculated band gap of 1.92 eV. The MoS2 nanosheets exhibited high degradation efficiency against both dyes. The RhB and MB dyes experienced degradation efficiencies of 97.30 % (RhB) and 98.05 % (MB) in 75 min 90 min, respectively. The MoS2 photocatalyst is also observed to be effective in photocatalytic reduction of Cr(VI) and displayed 91.05% reduction of Cr(VI) to Cr(III) in 75 min. The results reveal that the synthesised MoS2 nanosheet is a good photocatalytic material for degradation of dyes and reduction of Cr(VI) to Cr(III) in water.
Article Metrics:
Last update:
In order for BCREC Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)