Synthesis of 2,2,4-Trimethyl-2,3-dihydro-1H-1,5-benzodiazepine using Treated Natural Zeolite Catalyst

*Maulidan Firdaus orcid scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia
Meyta Dyah Prameswari  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Indonesia
Received: 14 Feb 2018; Revised: 7 Aug 2018; Accepted: 20 Aug 2018; Published: 15 Apr 2019; Available online: 25 Jan 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

The cyclocondensation of 1,2-phenylenediamine and acetone in the presence of treated natural zeolite catalyst (TNZ) under solvent-free condition has been done. The research consisted of three steps. The first step was treatment of natural zeolite by mixing this material in hydrochloric acid solution at 50 °C for 1 hour to be followed by soaking the zeolite in ammonium chloride solution for 5 days. The second step was solvent-free condensation of 1,2-phenylenediamine and acetone using TNZ at 50 °C for 2 hours with weight ratio variation of catalyst, i.e. 15, 30, 45, and 60% (wt/wt). The third step was to study catalyst reusability for the condensation reaction. Based on TLC, FTIR, and 1H NMR analyses, the condensation afforded 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazepine as the product in 73% yield with the optimum of catalyst loading at 30% (wt/wt). The reusability test showed that the catalyst can be reused for the cyclocondensation for four times. Copyright © 2019 BCREC Group. All rights reserved 

Keywords: 1,5-Benzodiazepine; Catalyst Reusability; Heterogenous Catalyst; Natural Zeolite; Solvent-Free

Article Metrics:

  1. Schutz, H. (1982). Benzodiazepines. Springer: Heidelberg.
  2. Merluzzi, V.J., Hargrave, K.D., Labadia, M., Grozinger, K., Skoog, M., Wu, J.C., Shih, C.-K., Eckner, K., Hattox, S.; Adams, J., Rosenthal, A.S., Fannes, R., Eckner, R.J., Koup, R.A., Sullivan, J.L. (1990). Inhibition of HIV-1 Replication by a Non Nucleoside Reverse Transcriptase Inhibitor. Science, 250: 1411–1413.
  3. Di Braccio, M., Grossi, G., Roma, G., Vargiu, L., Mura, M., Marongiu, M.E. (2001). 1,5-Benzodiazepines. Part XII. Synthesis and Biological Evaluation of Tricyclic and Tetracyclic 1,5-Benzodiazepine Derivatives as Nevirapine Analogues. Eur. J. Med. Chem., 36: 935–949.
  4. Harris, R.C., Straley, J.M. (1968). Cationic Polymethine Dyes for Acrylic Fibres. U.S. Patent 1,537,757.
  5. El-Sayed, A.M., Khodairy, A., Salah, H., Abdel-Ghany, H. (2007). Part 7: Synthesis of Some New 1,5-benzodiazepines Fused with Different Heterocyclic Moieties. Phosphorous Sulfur Silicon Relat. Elem., 182: 711–722.
  6. Reddy, K.V.V., Rao, P.S., Ashok, D. (2000). A Facile Synthesis of 2-Benzoyl-6-hydroxy-3-methyl-5-(2-substituted-2,3-dihydro-1H-1,5-benzodiazepin-4-YL)benzo[b]furans. Synth. Commun., 30: 1825–1836.
  7. Nabih, K., Baouid, A., Hasnaoui, A., Kenz, A. (2004) Highly Regio and Diasteroselective 1,3-Dipolar Cycloaddition of Nitrile Oxides to 2,4-Dimethyl-3H-1,5-benzodiazepines: Synthesis of Bis[1,2,4-oxadiazolo] [1,5] benzodiazepine Derivatives. Synth. Commun., 34: 3565–3572.
  8. Wang, L.Z., Li, X.Q., An, Y.S. (2015). 1,5-Benzodiazepine Derivatives as Potential Antimicrobial Agents: Design, Synthesis, Biological Evaluation, and Structure–Activity Relationships. Org. Biomol. Chem., 13: 5497–5509.
  9. Pozarentzi, M., Stephanidou-Stephanatou, J., Tsoleridis, C.A. (2002). An Efficient Method for the Synthesis of 1,5-Benzodiazepine Derivatives under Microwave Irradiation without Solvent. Tetrahedron Lett., 43: 1755–1758.
  10. Zhou, X., Zhang, M.Y., Gao, S.T., Ma, J. J., Wang, C., Liu, C. (2009). An Efficient Synthesis of 1,5-Benzodiazepine Derivatives Catalyzed by Boric Acid. Chin. Chem. Lett., 20: 905–908.
  11. Prakash, G.S., Paknia, F., Narayan, A., Mathew, T., Olah, G.A. (2013). Synthesis of Perimidine and 1,5-Benzodiazepine Derivatives using Tamed Brønsted Acid, BF3–H2O. J. Fluor. Chem., 152: 99–105.
  12. Sangshetti, J.N., Kokare, N.D., Shinde, D.B. (2007). Sulfanilic Acid Catalyzed Solvent-free Synthesis of 1,5-Benzodiazepine Derivatives. Chin. Chem. Lett., 18: 1305–1308.
  13. Naeimi, H., Foroughi, H. (2015). Efficient, Environmentally Benign, One-pot Procedure for the Synthesis of 1,5-Benzodiazepine Derivatives using N-Methyl-2-pyrrolidonium Hydrogen Sulphate as an Ionic Liquid Catalyst under Solvent-free Conditions. Chin. J. Catal., 36: 734–741.
  14. Jadhav, A.H., Chinnappan, A., Patil, R.H., Kostjuk, S.V., Kim, H. (2014). Short Oligo Ethylene Glycolic Tailor-made Ionic Liquids as Highly Efficient and Reusable Catalyst for One-pot Synthesis of 1,5-Benzodiazepine Derivatives under Solvent Free Condition. Chem. Eng. J., 240: 228–234.
  15. Jeganathan, M., Pitchumani, K. (2014). Solvent-Free Syntheses of 1,5-Benzodiazepines using HY Zeolite as a Green Solid Acid Catalyst. ACS Sustain. Chem. Eng. 2: 1169–1176.
  16. Lancaster, M. (2016). Green chemistry: an Introductory Text, 3rd edition, Royal society of chemistry: Newfoundland.
  17. Jamatia, R., Gupta, A., Dam, B., Saha, M., Pal, A.K. (2017). Graphite Oxide: a Metal Free Highly Efficient Carbocatalyst for the Synthesis of 1,5-Benzodiazepines under Room Temperature and Solvent Free Heating Conditions. Green Chem., 19: 1576–1585.
  18. Pawar, G.T., Gadekar, S.P., Arbad, B.R., Lande, M.K. (2017). Modification, Characterization, and Catalytic Application of Mesolite for One Pot Synthesis of 3-Methyl-4-arylmethylene-isoxazol-5(4H)-ones. Bull. Chem. React. Eng. Catal., 12: 32–40.
  19. Tajbakhsh, M., Heravi, M.M., Mohajerani, B., Ahmadi, A.N. (2006). Solid Acid Catalytic Synthesis of 1,5-Benzodiazepines: a Highly Improved Protocol. J. Mol. Cat. A: Chem., 247: 213–215.
  20. Majid, S.A., Khanday, W.A. (2012). Tomar, R. Synthesis of 1,5-Benzodiazepine and Its Derivatives by Condensation Reaction using H-MCM-22 as Catalyst, J. Biomed. Biotechnol., 2012: 1–6.
  21. Firdaus, M., Meier, M.A.R., Biermann, U., Metzger, J.O. (2014). Renewable Co-polymers Derived from Castor Oil and Limonene. Eur. J. Lipid Sci. Technol., 116: 31–36.
  22. Firdaus, M., Handayani, N., Marfu’ah, L.T. (2016). Reduction of Aldehydes Using Sodium Borohydride under Ultrasonic Irradiation. Indones. J. Chem., 16: 229–232.
  23. Firdaus, M. (2017). Thiol-ene (Click) Reaction as Efficient Tools for Terpene Modification. Asian J. Org. Chem., 6: 1702–1714.
  24. Firdaus, M., Ainurofiq, A., Vellarani, A. (2016). A New Approach for the Synthesis of p-Anisyl Ethyl Fumarate: A C-9154 Antibiotic Analogue, Chem. Bulgarian J. Sci. Educ., 25: 874–880.
  25. Saputra, O.A., Prameswari, M.D., Kinanti, V.T.D., Mayasari, O.D., Sutarni, Y.D., Apriany, K., Lestari, W.W. (2017). Preparation, Characterization and Methylene Blue Dye Adsorption Ability of Acid Activated-Natural Zeolite, IOP Conf. Ser. Mater. Sci. Eng., 172: 1–10
  26. Sriningsih, W., Saerodji, M.G., Trisunaryanti, W., Armunanto, R., Falah, I.I. (2014). Fuel Production from LDPE Plastic Waste Over Natural Zeolite Supported Ni, Ni-Mo, Co and Co-Mo Metals, Procedia Environ. Sci., 20: 215–224.
  27. Wirawan, S.K., Sudibyo, H., Setiaji, M.F., Warmada, I.W., Wahyuni, E.T. (2015). Development of Natural Zeolites Adsorbent: Chemical Analysis and Preliminary TPD Adsorption Study, J. Eng. Sci. Technol, 4: 87–95.
  28. Gates, B.C. (1991). Catalytic Chemistry, John Wiley & Sons: New York.
  29. Byrappa, K., Kumar, B.S. (2007). Characterization of Zeolites by Infrared Spectroscopy, Asian J. Chem., 19: 4933–4935.
  30. Silverstein, R.M., Webster, F.X., Kiemle, D.J. (2005). Spectrometric Identification of Organic Compounds, 7th edition, John Wiley & Sons: New York.
  31. Odame, F., Kleyi, P., Hosten, E., Betz, R., Lobb, K., Tshentu, Z. (2013). The Formation of 2,2,4-Trimethyl-2,3-dihydro-1H-1,5-Benzodiazepine from 1,2-Diaminobenzene in the Presence of Acetone, Molecules, 18: 14293–14305.