Impact of Testing Temperature on the Structure and Catalytic Properties of Au Nanotubes Composites

*Anastassiya A. Mashentseva orcid scopus  -  The Institute of Nuclear Physics of the Republic of Kazakhstan, Kazakhstan
Maxim V. Zdorovets  -  The Institute of Nuclear Physics of the Republic of Kazakhstan, Russian Federation
Daryn B. Borgekov  -  The Institute of Nuclear Physics of the Republic of Kazakhstan, Kazakhstan
Received: 23 Jan 2018; Revised: 19 Mar 2018; Accepted: 19 Mar 2018; Published: 4 Dec 2018; Available online: 14 Nov 2018.
Open Access Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
License URL:

Citation Format:
Cover Image

In the paper, the catalytic activity of composites based on gold nanotubes and ion track membranes was studied using bench reaction of the p-nitrophenol (4-NP) reduction in the temperature range of 25-40 °C. The efficiency of the prepared catalysts was estimated on the rate constant of the reaction and by conversion degree of 4-NP to p-aminophenol (4-AP). The comprehensive evaluation of the structure was performed by X-ray diffraction and scanning electron microscopy. A decreasing of the composites activity was observed when the reaction were carried out at the temperature over 35 °C, due to an increased average crystallite size from 7.31±1.07 to 10.35±3.7 nm (after 1st run). In temperature range of 25-35 °C the efficiency of the composite catalyst was unchanged in 3 runs and decreases by 24-32 % after the 5th run. At the high temperature of 40 °C after the 5th run the composite become completely  catalytically inert. Copyright © 2018 BCREC Group. All rights reserved

Received: 23rd January 2018; Revised: 19th March 2018; Accepted: 19th March 2018

How to Cite: Mashentseva, A.A., Zdorovets, M.V., Borgekov, D.B. (2018). Impact of Testing Temperature on the Structure and Catalytic Properties of Au Nanotubes Composites. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (3): 405-411 (doi:10.9767/bcrec.13.3.2127.405-411)



Keywords: Gold Nanotubes; Composite Membrane; Catalysis; Ion Track Membranes

Article Metrics:

  1. Apel, P. (2001). Track Etching Technique in Membrane Technology. Radiation Measurements, 34(1-6): 559-566.
  2. Starosta, W. (2017). Radiation Use in Producing Track-Etched Membranes. In: Sun, Y. and Chmielewski, A.G. (eds). Applications of Ionizing Radiation in Materials Processing (32 p). Instytut Chemii i Techniki Jądrowej.
  3. Korolkov, I.V., Mashentseva, A.A., Güven, O., Zdorovets, M.V., Taltenov, A.A. (2015). Enhancing Hydrophilicity and Water Permea-bility of PET Track-Etched Membranes by Advanced Oxidation Process. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 365: 651-655.
  4. Barsbay, M., Güven, O. (2014). Grafting in Confined Spaces: Functionalization of Nanochannels of Track-Etched Membranes. Radiation Physics and Chemistry, 105: 26-30.
  5. Nguyen, Q.H., Ali, M., Nasir, S., Ensinger, W. (2015). Transport Properties of Track-Etched Membranes Having Variable Effective Pore-Lengths. Nanotechnology, 26(48): 485502.
  6. Kamakshi, Kumar, R., Saraswat, V.K., Kumar, M., Awasthi, K. (2017). Palladium Nanoparticle Binding in Functionalized Track Etched PET Membrane for Hydrogen Gas Separation. International Journal of Hydrogen Energy, 42(25): 16186-16194.
  7. Apel, P.Y., Blonskaya, I.V, Orelovitch, O.L., Sartowska, B.A., Spohr, R. (2012). Asymmetric Ion Track Nanopores for Sensor Techno-logy. Reconstruction of Pore Profile from Conductometric Measurements. Nanotechnology, 23(22): 225503.
  8. Howorka, S., Siwy, Z.S. (2012). Nanopores as Protein Sensors. Nature Biotechnology, 30(6): 506-507.
  9. Muench, F., Sun, L., Kottakkat, T., Antoni, M., Schaefer, S., Kunz, U., Ensinger, W. (2017). Free-Standing Networks of Core-Shell Metal and Metal Oxide Nanotubes for Glucose Sensing. ACS Applied Materials & Interfaces, 9(1): 771-781.
  10. Tunuguntla, R.H., Henley, R.Y., Yao, Y.-C., Pham, T.A., Wanunu, M., Noy, A. (2017). Enhanced Water Permeability and Tunable Ion Selectivity in Subnanometer Carbon Nanotube Porins. Science, 357(6353): 792-796.
  11. Yaroshchuk, A., Zhukova, O., Ulbricht, M., Ribitsch, V. (2005).
  12. Electrochemical and Other Transport Properties of Nanoporous Track-Etched Membranes Studied by the G Current Switch-off Technique. Langmuir, 21(15): 6872-6882.
  13. Durney, A.R., Frenette, L.C., Hodvedt, E.C., Krauss, T.D., Mukaibo, H. (2016). Fabrication of Tapered Microtube Arrays and Their Application as a Microalgal Injection Platform. ACS Applied Materials and Interfaces, 8(50): 34198-34208.
  14. Kadyrzhanov, K.K., Kozlovskiy, A.L., Kanyukov, E.Y., Mashentseva, A.A., Zdorovets, M.V., Shumskaya, E.E. (2017). Variation of Polymer-Template Pore Geometry as a Means of Controlling the Magnetic Properties of Metallic Nanostructures. Petroleum Chemistry: 57(9), 790-795.
  15. Spain, E., McCooey, A., Joyce, K., Keyes, T.E., Forster, R.J. (2015). Gold Nanowires and Nanotubes for High Sensitivity Detection of Pathogen DNA. Sensors and Actuators B: Chemical, 215: 159-165.
  16. Kozlovskiy, A.L., Korolkov, I.V., Kalkabay, G., Ibragimova, M.A., Ibrayeva, A.D., Zdorovets, M.V., Kaniukov, E.Y. (2017). Comprehensive Study of Ni Nanotubes for Bioapplications: From Synthesis to Payloads Attaching. Journal of Nanomaterials, 2017: 1-9.
  17. Muench, F., Rauber, M., Stegmann, C., Lauterbach, S., Kunz, U., Kleebe, H.-J., Ensinger, W. (2011). Ligand-optimized Electroless Synthesis of Silver Nanotubes and their Activity in the Reduction of 4-Nitrophenol. Nanotechnology, 22(41): 415602.
  18. Mashentseva, A.A., Borgekov, D.B., Niyazova, D.T., Zdorovets, M.V. (2015). Evaluation of the Catalytic Activity of the Composite Track-Etched Membranes for P-Nitrophenol Reduction Reaction. Petroleum Chemistry, 55(10): 810-815.
  19. Muench, F., Kunz, U., Neetzel, C., Lauterbach, S., Kleebe, H.-J., Ensinger, W. (2011). 4-(Dimethylamino)pyridine as a Powerful Auxiliary Reagent in the Electroless Synthesis of Gold Nanotubes. Langmuir, 27(1), 430-435.
  20. Pozun, Z.D., Rodenbusch, S.E., Keller, E., Tran, K., Tang, W., Stevenson, K.J., Henkelman, G. (2013). A Systematic Investigation of p-Nitrophenol Reduction by Bimetallic Dendrimer Encapsulated Nanoparticles. Journal of Physical Chemistry C, 117(15): 7598-7604.
  21. Borgekov, D., Mashentseva, A., Kislitsin, S., Kozlovskiy, A., Russakova, A., Zdorovets, M. (2015). Temperature Dependent Catalytic Activity of Ag/PET ion-Track Membranes Composites. Acta Physica Polonica A, 128: 871-874.
  22. Mashentseva, A., Borgekov, D., Zdorovets, M., Russakova, A. (2014).
  23. Synthesis, Structure, and Catalytic Activity of Au/Poly(Ethylene Terephthalate) Composites. Acta Physica Polonica A, 125: 1263-1266.
  24. Felix, E.-M., Antoni, M., Pause, I., Schaefer, S., Kunz, U., Weidler, N., Ensinger, W. (2016). Template-based Synthesis of Metallic Pd Nanotubes by Electroless Deposition and their Use as Catalysts in the 4-Nitrophenol Model Reaction. Green Chem., 18(2): 558-564.
  25. Mashentseva, A., Borgekov, D., Kislitsin, S., Zdorovets, M., Migunova, A. (2015). Comparative Catalytic Activity of PET Track-Etched Membranes with Embedded Silver and Gold Nanotubes. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 365: 70-74.
  26. Muench, F., Hussein, L., Stohr, T., Kunz, U., Ayata, S., Gärtner, I., Ensinger, W. (2016). Templated Synthesis of Pure and Bimetallic Gold/Platinum Nanotubes using Complementary Seeding and Plating Reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 508: 197-204.
  27. Schaefer, S., Felix, E.-M., Muench, F., Antoni, M., Lohaus, C., Brötz, J., Ensinger, W. (2016). NiCo Nanotubes Plated on Pd Seeds as a Designed Magnetically Recollectable Catalyst with High Noble Metal Utilization. RSC Advances, 6(74): 70033-70039.
  28. Muench, F., Bohn, S., Rauber, M., Seidl, T., Radetinac, A., Kunz, U., Ensinger, W. (2014). Polycarbonate Activation for Electroless Plating by Dimethylaminoborane Absorption and Subsequent Nanoparticle Deposition. Applied Physics A, 116(1): 287-294.
  29. Korolkov, I.V., Borgekov, D.B., Mashentseva, A.A., Güven, O., Atlcl, A.B., Kozlovskiy, A. L., Zdorovets, M. V. (2017). The Effect of Oxidation Pretreatment of Polymer Template on the Formation and Catalytic Activity of Au/PET Membrane Composites. Chemical Papers, 71(12): 2353-2358.
  30. Pradhan, N., Pal, A., Pal, T. (2001). Catalytic Reduction of Aromatic Nitro Compounds by Coinage Metal Nanoparticles. Langmuir, 17(5), 1800-1802.
  31. You, H., Fang, J. (2016). Particle-mediated Nucleation and Growth of Solution-Synthesized Metal Nanocrystals: A New Story Beyond the LaMer Curve. Nano Today, 11(2): 145-167.
  32. Xie, Z., Liu, Z., Wang, Y., Yang, Q., Xu, L., Ding, W. (2010). An Overview of Recent Development in Composite Catalysts from Porous Materials for Various Reactions and Processes. International Journal of Molecular Sciences, 11(5): 2152-2187.

  1. Electron Beam Induced Enhancement of the Catalytic Properties of Ion-Track Membranes Supported Copper Nanotubes in the Reaction of the P-Nitrophenol Reduction
    Anastassiya A. Mashentseva, Dmitriy I. Shlimas, Artem L. Kozlovskiy, Maxim V. Zdorovets, Alyona V. Russakova, Murat Kassymzhanov, Alexander N. Borisenko, Catalysts, vol. 9, no. 9, pp. 737, 2019. doi: 10.3390/catal9090737