Impact of Testing Temperature on the Structure and Catalytic Properties of Au Nanotubes Composites

*Anastassiya A. Mashentseva orcid scopus  -  The Institute of Nuclear Physics of the Republic of Kazakhstan, Kazakhstan
Maxim V. Zdorovets  -  The Institute of Nuclear Physics of the Republic of Kazakhstan, Russian Federation
Daryn B. Borgekov  -  The Institute of Nuclear Physics of the Republic of Kazakhstan, Kazakhstan
Received: 23 Jan 2018; Published: 4 Dec 2018.
Open Access Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

In the paper, the catalytic activity of composites based on gold nanotubes and ion track membranes was studied using bench reaction of the p-nitrophenol (4-NP) reduction in the temperature range of 25-40 °C. The efficiency of the prepared catalysts was estimated on the rate constant of the reaction and by conversion degree of 4-NP to p-aminophenol (4-AP). The comprehensive evaluation of the structure was performed by X-ray diffraction and scanning electron microscopy. A decreasing of the composites activity was observed when the reaction were carried out at the temperature over 35 °C, due to an increased average crystallite size from 7.31±1.07 to 10.35±3.7 nm (after 1st run). In temperature range of 25-35 °C the efficiency of the composite catalyst was unchanged in 3 runs and decreases by 24-32 % after the 5th run. At the high temperature of 40 °C after the 5th run the composite become completely  catalytically inert. Copyright © 2018 BCREC Group. All rights reserved

Received: 23rd January 2018; Revised: 19th March 2018; Accepted: 19th March 2018

How to Cite: Mashentseva, A.A., Zdorovets, M.V., Borgekov, D.B. (2018). Impact of Testing Temperature on the Structure and Catalytic Properties of Au Nanotubes Composites. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (3): 405-411 (doi:10.9767/bcrec.13.3.2127.405-411)



Gold Nanotubes; Composite Membrane; Catalysis; Ion Track Membranes

Article Metrics:

  1. Apel, P. (2001). Track Etching Technique in Membrane Technology. Radiation Measurements, 34(1-6): 559-566.
  2. Starosta, W. (2017). Radiation Use in Producing Track-Etched Membranes. In: Sun, Y. and Chmielewski, A.G. (eds). Applications of Ionizing Radiation in Materials Processing (32 p). Instytut Chemii i Techniki Jądrowej.
  3. Korolkov, I.V., Mashentseva, A.A., Güven, O., Zdorovets, M.V., Taltenov, A.A. (2015). Enhancing Hydrophilicity and Water Permea-bility of PET Track-Etched Membranes by Advanced Oxidation Process. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 365: 651-655.
  4. Barsbay, M., Güven, O. (2014). Grafting in Confined Spaces: Functionalization of Nanochannels of Track-Etched Membranes. Radiation Physics and Chemistry, 105: 26-30.
  5. Nguyen, Q.H., Ali, M., Nasir, S., Ensinger, W. (2015). Transport Properties of Track-Etched Membranes Having Variable Effective Pore-Lengths. Nanotechnology, 26(48): 485502.
  6. Kamakshi, Kumar, R., Saraswat, V.K., Kumar, M., Awasthi, K. (2017). Palladium Nanoparticle Binding in Functionalized Track Etched PET Membrane for Hydrogen Gas Separation. International Journal of Hydrogen Energy, 42(25): 16186-16194.
  7. Apel, P.Y., Blonskaya, I.V, Orelovitch, O.L., Sartowska, B.A., Spohr, R. (2012). Asymmetric Ion Track Nanopores for Sensor Techno-logy. Reconstruction of Pore Profile from Conductometric Measurements. Nanotechnology, 23(22): 225503.
  8. Howorka, S., Siwy, Z.S. (2012). Nanopores as Protein Sensors. Nature Biotechnology, 30(6): 506-507.
  9. Muench, F., Sun, L., Kottakkat, T., Antoni, M., Schaefer, S., Kunz, U., Ensinger, W. (2017). Free-Standing Networks of Core-Shell Metal and Metal Oxide Nanotubes for Glucose Sensing. ACS Applied Materials & Interfaces, 9(1): 771-781.
  10. Tunuguntla, R.H., Henley, R.Y., Yao, Y.-C., Pham, T.A., Wanunu, M., Noy, A. (2017). Enhanced Water Permeability and Tunable Ion Selectivity in Subnanometer Carbon Nanotube Porins. Science, 357(6353): 792-796.
  11. Yaroshchuk, A., Zhukova, O., Ulbricht, M., Ribitsch, V. (2005).
  12. Electrochemical and Other Transport Properties of Nanoporous Track-Etched Membranes Studied by the G Current Switch-off Technique. Langmuir, 21(15): 6872-6882.
  13. Durney, A.R., Frenette, L.C., Hodvedt, E.C., Krauss, T.D., Mukaibo, H. (2016). Fabrication of Tapered Microtube Arrays and Their Application as a Microalgal Injection Platform. ACS Applied Materials and Interfaces, 8(50): 34198-34208.
  14. Kadyrzhanov, K.K., Kozlovskiy, A.L., Kanyukov, E.Y., Mashentseva, A.A., Zdorovets, M.V., Shumskaya, E.E. (2017). Variation of Polymer-Template Pore Geometry as a Means of Controlling the Magnetic Properties of Metallic Nanostructures. Petroleum Chemistry: 57(9), 790-795.
  15. Spain, E., McCooey, A., Joyce, K., Keyes, T.E., Forster, R.J. (2015). Gold Nanowires and Nanotubes for High Sensitivity Detection of Pathogen DNA. Sensors and Actuators B: Chemical, 215: 159-165.
  16. Kozlovskiy, A.L., Korolkov, I.V., Kalkabay, G., Ibragimova, M.A., Ibrayeva, A.D., Zdorovets, M.V., Kaniukov, E.Y. (2017). Comprehensive Study of Ni Nanotubes for Bioapplications: From Synthesis to Payloads Attaching. Journal of Nanomaterials, 2017: 1-9.
  17. Muench, F., Rauber, M., Stegmann, C., Lauterbach, S., Kunz, U., Kleebe, H.-J., Ensinger, W. (2011). Ligand-optimized Electroless Synthesis of Silver Nanotubes and their Activity in the Reduction of 4-Nitrophenol. Nanotechnology, 22(41): 415602.
  18. Mashentseva, A.A., Borgekov, D.B., Niyazova, D.T., Zdorovets, M.V. (2015). Evaluation of the Catalytic Activity of the Composite Track-Etched Membranes for P-Nitrophenol Reduction Reaction. Petroleum Chemistry, 55(10): 810-815.
  19. Muench, F., Kunz, U., Neetzel, C., Lauterbach, S., Kleebe, H.-J., Ensinger, W. (2011). 4-(Dimethylamino)pyridine as a Powerful Auxiliary Reagent in the Electroless Synthesis of Gold Nanotubes. Langmuir, 27(1), 430-435.
  20. Pozun, Z.D., Rodenbusch, S.E., Keller, E., Tran, K., Tang, W., Stevenson, K.J., Henkelman, G. (2013). A Systematic Investigation of p-Nitrophenol Reduction by Bimetallic Dendrimer Encapsulated Nanoparticles. Journal of Physical Chemistry C, 117(15): 7598-7604.
  21. Borgekov, D., Mashentseva, A., Kislitsin, S., Kozlovskiy, A., Russakova, A., Zdorovets, M. (2015). Temperature Dependent Catalytic Activity of Ag/PET ion-Track Membranes Composites. Acta Physica Polonica A, 128: 871-874.
  22. Mashentseva, A., Borgekov, D., Zdorovets, M., Russakova, A. (2014).
  23. Synthesis, Structure, and Catalytic Activity of Au/Poly(Ethylene Terephthalate) Composites. Acta Physica Polonica A, 125: 1263-1266.
  24. Felix, E.-M., Antoni, M., Pause, I., Schaefer, S., Kunz, U., Weidler, N., Ensinger, W. (2016). Template-based Synthesis of Metallic Pd Nanotubes by Electroless Deposition and their Use as Catalysts in the 4-Nitrophenol Model Reaction. Green Chem., 18(2): 558-564.
  25. Mashentseva, A., Borgekov, D., Kislitsin, S., Zdorovets, M., Migunova, A. (2015). Comparative Catalytic Activity of PET Track-Etched Membranes with Embedded Silver and Gold Nanotubes. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 365: 70-74.
  26. Muench, F., Hussein, L., Stohr, T., Kunz, U., Ayata, S., Gärtner, I., Ensinger, W. (2016). Templated Synthesis of Pure and Bimetallic Gold/Platinum Nanotubes using Complementary Seeding and Plating Reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 508: 197-204.
  27. Schaefer, S., Felix, E.-M., Muench, F., Antoni, M., Lohaus, C., Brötz, J., Ensinger, W. (2016). NiCo Nanotubes Plated on Pd Seeds as a Designed Magnetically Recollectable Catalyst with High Noble Metal Utilization. RSC Advances, 6(74): 70033-70039.
  28. Muench, F., Bohn, S., Rauber, M., Seidl, T., Radetinac, A., Kunz, U., Ensinger, W. (2014). Polycarbonate Activation for Electroless Plating by Dimethylaminoborane Absorption and Subsequent Nanoparticle Deposition. Applied Physics A, 116(1): 287-294.
  29. Korolkov, I.V., Borgekov, D.B., Mashentseva, A.A., Güven, O., Atlcl, A.B., Kozlovskiy, A. L., Zdorovets, M. V. (2017). The Effect of Oxidation Pretreatment of Polymer Template on the Formation and Catalytic Activity of Au/PET Membrane Composites. Chemical Papers, 71(12): 2353-2358.
  30. Pradhan, N., Pal, A., Pal, T. (2001). Catalytic Reduction of Aromatic Nitro Compounds by Coinage Metal Nanoparticles. Langmuir, 17(5), 1800-1802.
  31. You, H., Fang, J. (2016). Particle-mediated Nucleation and Growth of Solution-Synthesized Metal Nanocrystals: A New Story Beyond the LaMer Curve. Nano Today, 11(2): 145-167.
  32. Xie, Z., Liu, Z., Wang, Y., Yang, Q., Xu, L., Ding, W. (2010). An Overview of Recent Development in Composite Catalysts from Porous Materials for Various Reactions and Processes. International Journal of Molecular Sciences, 11(5): 2152-2187.