Recyclable Nanocrystalline Copper Based on MoO3/SiO2 as an Efficient Catalyst for Acylation of Amines

*Sharda P. Dagade -  Department of Chemistry, Yashwantrao Mohite College Pune-411 038, Bharati Vidyapeeth Deemed University , Pune, India
Jaymala M. Deshmukh -  Department of Chemistry, Yashwantrao Mohite College Pune-411 038, Bharati Vidyapeeth Deemed University , Pune, India
Received: 20 Jan 2018; Revised: 28 Sep 2018; Accepted: 30 Sep 2018; Published: 15 Apr 2019; Available online: 25 Jan 2019.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Citation Format:
Cover Image

Various loadings of copper supported on MoO3/SiO2 (CMS) were prepared by sol-gel method and used for the synthesis of substituted benzimidazole. Further it was characterized by using X‐ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Transmission Electron Microscopy (TEM), and acidity measurement by potentiometric method. XRD results indicated that Cu is present on the support primarily as CuO. The SEM and TEM results showed dispersion of cubic CuO nanoparticles on the surface. These mixed oxides were studied for the acylation of o-phenylene diamine with acetic acid in liquid phase. 10 wt. % CMS gave best results at 110 ºC with 94.81 % conversion of o-phenylene diamine and 100 % selectivity of substituted benzimidazole. Different parameters were studied for optimization of acylation, such as: temperature, acylating agents, solvents, amount of catalyst, and different catalysts. The CMS catalyst could also be recovered and reused at three times without any discernible decrease in its catalytic activity. Copyright © 2018 BCREC Group. All rights reserved


Acylation; O-Phenylene Diamine; Mixed Oxide; Benzimidazole; Sol Gel

Article Metrics:

  1. Williams, C.C., Ekerdt, J.G., Jehng, J.M., Hardcastle, F.D., Turek, A.M., Wachs, I.E. (1991). J. Phys. Chem., 95: 8781-8791
  2. Carbucicchio, M., Trifiro, F. (1980). J. Catal., 62: 13-18
  3. Bruckman, K., Grzybowska, B., Che, M., Tatibouet, J.M. (1993). Appl. Catal. A., 96: 279-288
  4. Ono, T., Miyata, H., Kubokawa, Y. (1987). J. Chem. Soc. Faraday Trans., 183: 1761-1770
  5. Ma, X., Gong, J., Wang, S., Gao, N., Wang, D., Yang, X., He, F. (2004). Catal. Commun., 5: 101-106
  6. Patel, R.M. (2012). Synthesis, Characterization and Application of Mesoporous Materials, PhD Dissertation, Applied Chemistry Department, The Maharaja Sayajirao, University of Baroda.
  7. Auroux, A., Gervasini, A. (1990). J. Phys. Chem., 94: 6371-6379
  8. Kawai, M., Tsukuda, M., Tamaru, K. (1981). Surf. Sci., 111: L716-L720
  9. Preston, P.N., Stevens, M.F.G., Tennant, G. (1980). Benzimidazoles and Congeneric Tricyclic Compounds, Part 2, John Wiley and Sons, New York.
  10. Spasov, A.A., Yozhitsa, I.N., Bugaeva, L.I., Anisimova, V.A. (1999). Rearrangement Strategy for the Syntheses of 2-Amino Anilines. Pharm. Chem. J., 33: 232-243.
  11. Porcari, A.R., Devivar, R.V., Kucera, L.S., Drach, J.C., Townsend, L.B. (1998). Design, Synthesis and Antiviral Evaluation of 1-(Substituted Benzyl)-2-Substituted-5,6-Dichloro-Benzimidazoles as Non Nucleoside Analogues of 2,5,6-trichloral-((-D-Ribofuranosyl) Benzimidazole. J. Med. Chem., 41: 1252-1262.
  12. Roth, M., Morningstar, M.L., Boyer, P.L., Hughes, S.H., Bukheit, R.W., Michejda, C.J. (1997). Synthesis and Biological Activity of Novel Nonnucleosides Inhibitors of HIV-1 Reverse Transcriptase, 2-Aryl Substituted Benzimidazoles. J. Med. Chem., 40: 4199-4207
  13. Singh, N., Pandurangan, A., Rana, K., Anand, P., Ahmad, A., Tiwari, A.K. (2012). Benzimidazole: A Short Review of their Antimicrobial Activities. Int. Curr. Pharm. J., 1: 119-127.
  14. Walia, R., Hedaitullah, M.D., Naaz, S.F., Iqbal, K., Lamba, H.S. (2011). Benzimidazole Derivatives – An Overview, Int. J. Res. Pharm. hem., 1: 565-574
  15. Kedar, M.S., Dighe, N.S., Pattan, S.R., Musmade, D.S., Thakur, D., Bhosale, M., Gaware, V.M. (2010). Benzimidazole in Medicinal Chemistry: An Overview. Der Pharma Chem.. 2: 249-256.
  16. Yerragunta, V., Patil, P., Srujana, S., Devi, R., Gayathri, R., Aary, S.D. (2014). Benzimidazole Derivatives and Its Biological Importance: A Review, PharmaTutor., 2: 109-113.
  17. Kadhim, A.J., Kazim, A.C. (2018). Synthesis and Characterization of Benzimidazole by Using o-Phenylenediamine with Different Aldehydes and Carboxylic Acids in the Presence of ρ-TSOH as a Catalyst. Orient. J. Chem., 34: 2131-2136
  18. Mohammad, S., Avijit, S., Mohammad, M., Abdullah, M. (2017). Synthesis, Characterization and Antimicrobial Activity of 1,3,4-Oxadiazole Bearing 1H-Benzimidazole Derivatives. Arabian Journal of Chemistry, 10: 503-508.
  19. Jubie, S., Rajeshkumar, R1, Yellareddy, B., Siddhartha, G., Sandeep, M., Surendrareddy, K. (2010) Microwave Assisted Synthesis of some Novel Benzimidazole Substituted Fluoroquinolones and their Antimicrobial Evaluation. J. Pharm. Sci. & Res., 2: 69-76
  20. Curini, M., Epifano, F., Montanari, F., Rosati, O., Taccone, S. (2004). Ytterbium Triflate Promoted Synthesis of Benzimidazole Derivatives, Synlett., 10: 1832-1834.
  21. Patil, V.D., Medha, G., Shramesha, M., Aarti, J. (2010). A Mild and Efficient Synthesis of Benzimidazole by using Lead Peroxide under Solvent Free Condition, Der Chemica Sinica., 1: 125-129.
  22. Kathirvelan, D., Yuvaraj, P., Babu, K., Nagarajan, A.S., Reddy, B.S.R. (2013). A Green Synthesis of Benzimidazoles, Indian J. Chem.. 52B: 1152-1156.
  23. Tushar, M., Kaneria, D.M., Kapse, G.K., Gaikwad, T.V., Sarvaiya, J.A. (2013). Mild and Efficient Synthesis of Benzimidazole by Using Zinc Chloride under Solvent Free Condition, IJPRS, 2: 90-98.
  24. Swami, M.B., Patil, S.G., Mathapati, S.R., Ghuge, H.G., Jadhav, A.H. (2015). Ecofriendly One Pot Synthesis of 2-Substituted Benzimidazole. Der Pharma Chem., 7: 533-535.
  25. Chari, M.A., Mosaa, Z-A., Shobha, D., Malayalama, S. (2013). Synthesis of Multifunctionalised 2-Substituted Benzimidazoles using Copper (II) Hydroxide as Efficient Solid Catalyst. Int. J. Org. Chem., 3: 243-250.
  26. Mukhopadhyay, C., Ghosh, S., Butcher, R.J. (2010). An Efficient and Versatile Synthesis of 2,2’-(alkanediyl)-bis-1H- Benzimidazoles Employing Aqueous Fluoroboric Acid as Catalyst: Density Functional Theory Calculations and Fluorescence Studies, ARKIVOC, 11: 75-96.
  27. Karimi-Jaberi, Z., Amiri, M. (2012). An Efficient and Inexpensive Synthesis of 2-Substituted Benzimidazoles in Water Using Boric Acid at Room Temperature E- J. Chem., 9: 167-170.
  28. Srinivasulu, R., Kumar, K.R., Veera, P., Satyanarayana, V. (2014). Facile and Efficient Method for Synthesis of Benzimidazole Derivatives Catalyzed by Zinc Triflate. Green Sustainable Chem., 4: 33-37.
  29. Kidwai, M., Jahan, N., Bhatnagar, D. (2010). Polyethylene Glycol: A Recyclable Solvent System for the Synthesis of Benzimidazole Derivatives using CAN as Catalyst, J. Chem. Sci., 122: 607–612.
  30. Patil, V.D., Patil, K.P. (2015). Synthesis of Benzimidazole and Benzoxazole Derivatives Catalyzed by Nickel Acetate as Organometallic Catalyst. Int. J. Chem. Tech. Res., 8: 457-465.
  31. Aliyan, H., Fazaeli, R., Fazaeli, N., Mssah, A.R., Naghash, H.J., Alizadeh, M., Emami, G. (2009). Facile Route for the Synthesis of Benzothiazoles and Benzimidazoles in the Presence of Tungstophosphoric Acid Impregnated Zirconium Phosphate under Solvent-Free Conditions, Heteroat. Chem., 20: 202-207.
  32. Zhang, Z.H., Yin, L., Wang, Y.M. (2007). An Expeditious Synthesis of Benzimidazole Derivatives Catalyzed by Lewis Acids. Catal. Commun., 8: 1126–1131.
  33. Chakrabarty, M., Karmakar, S., Ajanta, M., Arima, S., Harigaya, Y. (2006). Application of Sulfamic Acid as an Eco-Friendly Catalyst in an Expedient Synthesis of Benzimidazoles, Heterocycles, 68: 967-974.
  34. Vidhate, K.N., Waghmare, R.A. (2015). An Efficient and Ecofriendly RuO2-MoO3 Solid Heterogeneous Catalyst for the Synthesis of Benzimidazole from Aldehydes, Adv. Appl. Sci. Res., 6: 167-170.
  35. Kannan, V., Sreekumar, K. (2013). Clay Supported Titanium Catalyst for the Solvent Free Synthesis of Tetra Substituted Imidazoles and Benzimidazoles. J. Mol. Catal. A: Chemical, 376: 34–39.
  36. Ziarani, I.M., Badiei, A., Hassanzadeh, M. (2011). One-pot Synthesis of 2-
  37. Aryl-1-arylmethyl-1h-1,3-benzimidazole Derivatives using Sulfonic Acid Functionlized Silica (SiO2-Pr-SO3H) under Solvent Free Conditions. Int. J. Appl. Biol. Pharm., 2: 48-54.
  38. Ziarani, G.M., Badiei, A., Nahad, M.S., Alizadeh, S.G. (2012). Synthesis of 1,2-Disubstituted Benzimidazoles in the Presence of SBA-Pr-SO3H as a Nano Solid Acid Catalyst. JNS, 2: 213-220
  39. Kumar, P., Pandey, R.K., Bodas, M.S., Dagade, S.P., Dongare, M.K., Ramaswamy, A.V. (2002). Acylation of Alcohols, Thiols and Amines with Carboxylic Acids Catalyzed by Yttria–Zirconia-Based Lewis Acid. J. Mol. Catal. A: Chemical, 181: 207-213
  40. Pandey, R.K., Dagade, S.P., Malase, K.M., Songire, S.B., Kumar, P. (2006). Synthesis of Ceria-Yttria based Strong Lewis Acid Heterogeneous Catalyst: Application for Chemoselective Acylation and Ene Reaction. J. Mol. Catal. A: Chemical, 245: 255-259.
  41. Tarpada, U.P., Thummar, B.B., Raval, D.K. (2012). Polymer Supported Sulphanilic Acid – A Novel Green Heterogeneous Catalyst for Synthesis of Benzimidazole Derivatives. J. Saudi Chem. Soc., 20: 530-535
  42. Shen, M-G., Cai, C. (2007). Ytterbium Perfluorooctane Sulfonates Catalyzed Synthesis of Benzimidazole Derivatives in Fluorous Solvents. J. Fluorine Chem., 128: 232–235.
  43. Rathod, S.B., Lande, M.K., and Arbad, B.R. (2010) Synthesis, Characterization and Catalytic Application of MoO3/CeO2-ZrO2 Solid Heterogeneous Catalyst for the Synthesis of Benzimidazole Derivatives. Bull. Korean Chem. Soc., 31(10): 2835-2840.
  44. Chen, G-F., Dong, X-Y., Meng, F-Z., Chen, B-H., Li, J-T., Wang, S-X., Bai, G-Y. (2011). Synthesis of 2-Substituted Benzimidazoles Catalyzed by FeCl3/Al2O3 Under Ultrasonic Irradiation, Lett. Org. Chem., 8: 464-469.
  45. Pardeshi, S.D., Sonar, J.P., Pawar, S.S., Dekhane, D., Gupta, S., Zine, A.M., Thore, S.N. (2014). Sonicated Assisted Synthesis of Benzimidazoles, Benzoxazoles and Benzothiazoles in Aqueous Media, J. Chil. Chem. Soc., 59: 2335-2340
  46. Bougrin, K., Soufiaoui, M.. Nouvelle voie de. (1995). Synthese Des Arylimidazole Sous Irradiation Micro-Ondes En Milieu Sec. Tetrahedron Lett.36: 3683-3686.
  47. VanVilet, D.S., Gillespie, P., Scicinski, J.J. (2005). Rapid One-Pot Preparation of 2-Substituted Benzimidazoles from 2-Nitroanilines using Microwave Conditions. Tetrahedron Lett., 46: 6741-6743.
  48. Mobinikhaledi, A., Zendehdel, M., Jamshidi, F.H. (2007). Zeolite-catalyzed Synthesis of Substituted Benzimidazoles under Solvent-Free Condition and Microwave Irradiation. Synth. React. Inorg. Met.-Org. Chem., 37: 175-177.
  49. Kotbagi, T.V., Biradar, A.V., Umbarkar, S.B., Dongare, M.K. (2013). Isolation, Characterization, and Identification of Catalytically Active Species in the MoO3/SiO2 Catalyst during Solid Acid Catalyzed Reactions, ChemCatChem., 5: 1531-1537.
  50. El-Sharkawy, E.A., Khder A.S., Ahmed, A.I. (2007). Structural Characterization and Catalytic Activity of Molybdenum Oxide Supported Zirconia Catalysts. Micropor. Mesopor. Mater., 102: 128-137.
  51. Rao, K.N., Reddy, K.M., Lingaiah, N., Suryanarayana, I., Prasad, P.S. (2006). Structure and Reactivity of Zirconium Oxide-Supported Ammonium Salt of 12-Molybdophosphoric Acid Catalysts. J. Appl.Catal. A: Gen., 300: 139-146.
  52. Cid, R., Pecci, G. (1985). Potentiometric Method for Determining the Number and Relative Strength of Acid Sites in Colored Catalysts. J. Appl. Catal. A: Gen. 14: 15-21.
  53. Deshmukh, J.M., Dagade, S.P. (2018), Study of Structural and Catalytic Properties of Copper Supported Mixed Oxide Catalysts. International Journal of Current Advanced Research, 7: 13231-13235.
  54. Chari, M.A., Shobha, D., Sasaki, T. (2011). Room Temperature Synthesis of Benzimidazole Derivatives Using Re-usable Cobalt Hydroxide and Cobalt Oxide as an Efficient Solid Catalysts. Tetrahedron Lett., 52: 5575-5580.
  55. Chaudhari, C., Hakim Siddiki, S.M.A., Shimizu, K. (2015). Acceptorless Dehydrogenative Synthesis of Benzothiazoles and Benzimidazoles from Alcohols or Aldehydes by Heterogeneous Pt Catalysts under Neutral Conditions, Tetrahedron Lett., 56 (34): 4885-4888
  56. de Noronha, R.G., Ferrandes, A.C., Roao, C. (2009). MoO2Cl2 as a novel catalyst for Friedel craft acylation and sulfonylation. Tetrahedron Lett., 50: 1407-1410.
  57. Posternak, A.G., Garlyauskayte, R.Y., Yagupolskii, L.M. (2009). A novel Brønsted acid catalyst for Friedel–Crafts acylation, Tetrahedron Lett. 50: 446.
  58. Reichardt, C., Welton, T. (2011). Solvents and Solvent Effects in Organic Chemistry. 4th Ed. New York: Wiley-VCH, 303.
  59. Debecker, D.P., Mutin, P.H. (2012). Non-hydrolytic sol–gel routes to heterogeneous catalysts, Chem. Soc. Rev., 41: 3624.
  60. Gesser, H.D., Goswami, P.C. (1989). Aerogels and related porous materials, Chem. Rev. 89: 765