Silver Nanoparticles Supported on Chitosan as a Green and Robust Heterogeneous Catalyst for Direct Synthesis of Nitrogen Heterocyclic Compounds under Green Conditions

Seyedeh Fazileh Fazileh Hamzavi -  Department of Marine Biology, Science and Research Branch, Islamic Azad University , Tehran, Iran, Islamic Republic of
*Shahla Jamili -  Department of Marine Biology, Science and Research Branch, Islamic Azad University , Tehran, Iran Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization, Tehran, Iran, Islamic Republic of
Morteza Yousefzadi -  Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan , Bandarabbas, Iran, Islamic Republic of
Ali Mashinchian Moradi -  Department of Marine Biology, Science and Research Branch, Islamic Azad University , Tehran, Iran, Islamic Republic of
Narges Amrollahi Biuki -  Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan , Bandarabbas, Iran, Islamic Republic of
Received: 19 Jan 2018; Revised: 10 Sep 2018; Accepted: 18 Sep 2018; Published: 15 Apr 2019; Available online: 25 Jan 2018.
Open Access Copyright (c) 2019 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The catalytic efficiency of silver nanoparticles supported on chitosan as a green, robust, and efficient nanocatalyst for the direct synthesis of biologically active compounds, such as: imidazole derivatives as well as pyrazine scaffolds through multi-component reactions strategy, have been demonstrated. In this work, imidazole derivatives were achieved via pseudo four-component reactions by utilization of benzaldehydes, benzils, anilines, and ammonium acetate under solvent-free conditions. Moreover, pyrazine scaffolds were synthesized through a three-component reaction of phenylenediamine derivatives, isocyanides and various ketones in water. The main advantages of this protocol are the  reusability of the catalyst, operational simplicity, mild reaction conditions, and high-yielding. Copyright © 2019 BCREC Group. All rights reserved


Other format:

Chitosan; Silver nanoparticles; Heterogeneous catalyst; Heterocyclic compounds; Green chemistry
Cover Image

Article Metrics:

  1. Arbia, W., Arbia, L., Adour, L., Amrane, A. (2013). Chitin extraction from crustacean shells using biological methods-a review. Food Technol. Biotechnol., 51(1): 12-25.
  2. Dash, M., Chiellini, F., Ottenbrite, R., Chiellini, E. (2011). Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci., 36(8): 981-1014.
  3. Agnihotri, S.A., Mallikarjuna, N.N., Aminabhavi, T.M. (2004). Recent advances on chitosan-based micro-and nanoparticles in drug delivery. Journal of Controlled Release, 100(1): 5-28.
  4. Wang, J., Chen, C. (2014). Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol., 160: 129-141.
  5. Mati-Baouche, N., Elchinger, P.-H., De Baynast, H., Pierre, G., Delattre, C., Michaud, P. (2014). Chitosan as an adhesive. Eur. Polym. J., 60: 198-212.
  6. Bai, H., Zhang, H., He, Y., Liu, J., Zhang, B., Wang, J. (2014). Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes. J. Memb. Sci., 454: 220-232.
  7. Baig, R.N., Varma, R.S. (2013). Copper on chitosan: a recyclable heterogeneous catalyst for azide–alkyne cycloaddition reactions in water. Green Chem., 15(7): 1839-1843.
  8. Affrose, A., Suresh, P., Azath, I.A., Pitchumani, K. (2015). Palladium nanoparticles embedded on thiourea-modified chitosan: a green and sustainable heterogeneous catalyst for the Suzuki reaction in water. RSC Advances, 5(35): 27533-27539.
  9. Bindhu, M., Umadevi, M. (2015). Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim. Acta, Part A, 135: 373-378.
  10. Dong, Z., Le, X., Li, X., Zhang, W., Dong, C., Ma, J. (2014). Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl. Catal., B 158: 129-135.
  11. Yang, G.-W., Gao, G.-Y., Wang, C., Xu, C.-L., Li, H.-L. (2008). Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon, 46(5): 747-752.
  12. Keshavaraja, A., She, X., Flytzani-Stephanopoulos, M. (2000). Selective catalytic reduction of NO with methane over Ag-alumina catalysts. Appl. Catal., B 27(1): L1-L9.
  13. Patra, S., Naik, A.N., Pandey, A.K., Sen, D., Mazumder, S., Goswami, A. (2016). Silver nanoparticles stabilized in porous polymer support: A highly active catalytic nanoreactor. Appl. Catal., A 524: 214-222.
  14. Xu, R., Wang, D., Zhang, J., Li, Y. (2006). Shape‐dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J., 1(6): 888-893.
  15. Salam, N., Sinha, A., Roy, A.S., Mondal, P., Jana, N.R., Islam, S.M. (2014). Synthesis of silver–graphene nanocomposite and its catalytic application for the one-pot three-component coupling reaction and one-pot synthesis of 1, 4-disubstituted 1,2,3-triazoles in water. RSC Advances, 4(20): 10001-10012.
  16. Dömling, A., Ugi, I. (2000). Multicomponent reactions with isocyanides.
  17. Angew. Chem. Int. Ed., 39(18): 3168-3210.
  18. Zhu, J., Bienaymé, H., Multicomponent reactions, John Wiley & Sons, 2006.
  19. Ugi, I., Dömling, A., Hörl, W. (1994). Multicomponent reactions in organic chemistry. Endeavour, 18(3): 115-122.
  20. Nair, V., Rajesh, C., Vinod, A., Bindu, S., Sreekanth, A., Mathen, J., Balagopal, L. (2003). Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes. Acc. Chem. Res., 36(12): 899-907.
  21. Akritopoulou-Zanze, I. (2008). Isocyanide-based multicomponent reactions in drug discovery. Curr. Opin. Chem. Biol., 12(3): 324-331.
  22. Cabrele, C., Reiser, O. (2016). The Modern Face of Synthetic Heterocyclic Chemistry. J. Org. Chem, 81(21): 10109-10125.
  23. Hollis, A., Ahmed, Z. (2013). Preserving antibiotics, rationally. New Engl. J.
  24. Med., 369(26): 2474-2476.
  25. Shaabani, A., Hooshmand, S.E. (2018). Malononitrile dimer as a privileged reactant in design and skeletal diverse synthesis of heterocyclic motifs. Mol. Divers., 1-18.
  26. Gallagher, T.F., Fier-Thompson, S.M., Garigipati, R.S., Sorenson, M.E., Smietana, J.M., Lee, D., Bender, P.E., Lee, J.C., Laydon, J.T., Griswold, D.E. (1995). 2,4,5-Triarylimidazole inhibitors of IL-1 biosynthesis. Bioorg. Med. Chem. Lett., 5(11): 1171-1176.
  27. Misono, M. (2001). Unique acid catalysis of heteropoly compounds (heteropolyoxo-metalates) in the solid state. Chem. Commun, 13): 1141-1152.
  28. Chang, L.L., Sidler, K.L., Cascieri, M.A., de Laszlo, S., Koch, G., Li, B., MacCoss, M., Mantlo, N., O'Keefe, S., Pang, M. (2001). Substituted imidazoles as glucagon receptor antagonists. Bioorg. Med. Chem. Lett., 11(18): 2549-2553.
  29. Shalini, K., Sharma, P.K., Kumar, N. (2010). Imidazole and its biological activities: A review. Der Chemica Sinica, 1(3): 36-47.
  30. Gupta, D., Ghosh, N.N., Chandra, R. (2005). Synthesis and pharmacological evaluation of substituted 5-[4-[2-(6, 7-dimethyl-1, 2, 3, 4-tetrahydro-2-oxo-4-quinoxalinyl) ethoxy] phenyl] methylene] thiazolidine-2, 4-dione derivatives as potent euglycemic and hypolipidemic agents. Bioorg. Med. Chem. Lett., 15(4): 1019-1022.
  31. Rosner, M., Billhardt-Troughton, U.-M., Kirsch, R., Kleim, J.-P., Meichsner, C., Riess, G., Winkler, I., Quinoxalines, a process for their preparation and their use, Google Patents???????, 1998.
  32. Jones, Z., Groneberg, R., Drew, M., Eary, C. US Patent 20050282812, 2005.
  33. Heravi, M.M., Daraie, M., Zadsirjan, V. (2015). Current advances in the synthesis and biological potencies of tri-and tetra-substituted 1H-imidazoles. Mol. Divers., 19(3): 577-623.
  34. Ryu, T., Baek, Y., Lee, P.H. (2015). Synthesis of Pyrazines from Rhodium-Catalyzed Reaction of 2H-Azirines with N-Sulfonyl 1,2,3-Triazoles. J. Org. Chem., 80(4): 2376-2383.
  35. Bin Ahmad, M., Lim, J.J., Shameli, K., Ibrahim, N.A., Tay, M.Y. (2011). Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules, 16(9): 7237-7248.
  36. Govindan, S., Nivethaa, E., Saravanan, R., Narayanan, V., Stephen, A. (2012). Synthesis and characterization of chitosan-silver nanocomposite. Applied Nanoscience, 2(3): 299-303.
  37. Shaabani, A., Sepahvand, H., Hooshmand, S.E., Borjian Boroujeni, M. (2016). Design, preparation and characterization of Cu/GA/Fe3O4@ SiO2 nanoparticles as a catalyst for the synthesis of benzodiazepines and imidazoles. Appl. Organomet. Chem., 30(6): 414-421.
  38. Sharma, S.D., Hazarika, P., Konwar, D. (2008). An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetra-substituted imidazoles catalyzed by InCl3·3H2O. Tetrahedron Lett., 49(14): 2216-2220.
  39. Teimouri, A., Chermahini, A.N. (2011). An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed via solid acid nano-catalyst. J. Mol. Catal. A: Chem., 346(1): 39-45.
  40. Ghorbani-Vaghei, R., Amiri, M., Karimi-Nami, R., Toghraei-Semiromi, Z., Ghavidel, M. (2013). N,N,N',N'-Tetrabromobenzene-1,3-disulfonamide and poly (N-bromo-N-ethylbenzene-1,3-disulfonamide) as new and efficient catalysts for the synthesis of highly substituted 1,6-dihydropyrazine-2,3-dicarbonitrile derivatives. Mol. Divers., 17(2): 251-259.
  41. Shaabani, A., Maleki, A., Hajishaabanha, F., Mofakham, H., Seyyedhamzeh, M., Mahyari, M., Ng, S.W. (2009). Novel syntheses of tetrahydrobenzodiazepines and dihydropyrazines via isocyanide-based multicomponent reactions of diamines. J. Comb. Chem., 12(1): 186-190.