skip to main content

Silver Nanoparticles Supported on Chitosan as a Green and Robust Heterogeneous Catalyst for Direct Synthesis of Nitrogen Heterocyclic Compounds under Green Conditions

1Department of Marine Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran, Islamic Republic of

2Iranian Fisheries Science Research Institute, Agricultural Research Education and Extension Organization, Tehran, Iran, Islamic Republic of

3Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandarabbas, Iran, Islamic Republic of

Received: 19 Jan 2018; Revised: 10 Sep 2018; Accepted: 18 Sep 2018; Published: 15 Apr 2019; Available online: 25 Jan 2018.
Open Access Copyright (c) 2019 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The catalytic efficiency of silver nanoparticles supported on chitosan as a green, robust, and efficient nanocatalyst for the direct synthesis of biologically active compounds, such as: imidazole derivatives as well as pyrazine scaffolds through multi-component reactions strategy, have been demonstrated. In this work, imidazole derivatives were achieved via pseudo four-component reactions by utilization of benzaldehydes, benzils, anilines, and ammonium acetate under solvent-free conditions. Moreover, pyrazine scaffolds were synthesized through a three-component reaction of phenylenediamine derivatives, isocyanides and various ketones in water. The main advantages of this protocol are the  reusability of the catalyst, operational simplicity, mild reaction conditions, and high-yielding. 

 

Fulltext View|Download
Keywords: Chitosan; Silver nanoparticles; Heterogeneous catalyst; Heterocyclic compounds; Green chemistry

Article Metrics:

Article Info
Section: Original Research Articles
Language : EN
Statistics:
Share:
  1. Arbia, W., Arbia, L., Adour, L., Amrane, A. (2013). Chitin extraction from crustacean shells using biological methods-a review. Food Technol. Biotechnol., 51(1): 12-25
  2. Dash, M., Chiellini, F., Ottenbrite, R., Chiellini, E. (2011). Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci., 36(8): 981-1014
  3. Agnihotri, S.A., Mallikarjuna, N.N., Aminabhavi, T.M. (2004). Recent advances on chitosan-based micro-and nanoparticles in drug delivery. Journal of Controlled Release, 100(1): 5-28
  4. Wang, J., Chen, C. (2014). Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol., 160: 129-141
  5. Mati-Baouche, N., Elchinger, P.-H., De Baynast, H., Pierre, G., Delattre, C., Michaud, P. (2014). Chitosan as an adhesive. Eur. Polym. J., 60: 198-212
  6. Bai, H., Zhang, H., He, Y., Liu, J., Zhang, B., Wang, J. (2014). Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes. J. Memb. Sci., 454: 220-232
  7. Baig, R.N., Varma, R.S. (2013). Copper on chitosan: a recyclable heterogeneous catalyst for azide–alkyne cycloaddition reactions in water. Green Chem., 15(7): 1839-1843
  8. Affrose, A., Suresh, P., Azath, I.A., Pitchumani, K. (2015). Palladium nanoparticles embedded on thiourea-modified chitosan: a green and sustainable heterogeneous catalyst for the Suzuki reaction in water. RSC Advances, 5(35): 27533-27539
  9. Bindhu, M., Umadevi, M. (2015). Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochim. Acta, Part A, 135: 373-378
  10. Dong, Z., Le, X., Li, X., Zhang, W., Dong, C., Ma, J. (2014). Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Appl. Catal., B 158: 129-135
  11. Yang, G.-W., Gao, G.-Y., Wang, C., Xu, C.-L., Li, H.-L. (2008). Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon, 46(5): 747-752
  12. Keshavaraja, A., She, X., Flytzani-Stephanopoulos, M. (2000). Selective catalytic reduction of NO with methane over Ag-alumina catalysts. Appl. Catal., B 27(1): L1-L9
  13. Patra, S., Naik, A.N., Pandey, A.K., Sen, D., Mazumder, S., Goswami, A. (2016). Silver nanoparticles stabilized in porous polymer support: A highly active catalytic nanoreactor. Appl. Catal., A 524: 214-222
  14. Xu, R., Wang, D., Zhang, J., Li, Y. (2006). Shape‐dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J., 1(6): 888-893
  15. Salam, N., Sinha, A., Roy, A.S., Mondal, P., Jana, N.R., Islam, S.M. (2014). Synthesis of silver–graphene nanocomposite and its catalytic application for the one-pot three-component coupling reaction and one-pot synthesis of 1, 4-disubstituted 1,2,3-triazoles in water. RSC Advances, 4(20): 10001-10012
  16. Dömling, A., Ugi, I. (2000). Multicomponent reactions with isocyanides
  17. Angew. Chem. Int. Ed., 39(18): 3168-3210
  18. Zhu, J., Bienaymé, H., Multicomponent reactions, John Wiley & Sons, 2006
  19. Ugi, I., Dömling, A., Hörl, W. (1994). Multicomponent reactions in organic chemistry. Endeavour, 18(3): 115-122
  20. Nair, V., Rajesh, C., Vinod, A., Bindu, S., Sreekanth, A., Mathen, J., Balagopal, L. (2003). Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes. Acc. Chem. Res., 36(12): 899-907
  21. Akritopoulou-Zanze, I. (2008). Isocyanide-based multicomponent reactions in drug discovery. Curr. Opin. Chem. Biol., 12(3): 324-331
  22. Cabrele, C., Reiser, O. (2016). The Modern Face of Synthetic Heterocyclic Chemistry. J. Org. Chem, 81(21): 10109-10125
  23. Hollis, A., Ahmed, Z. (2013). Preserving antibiotics, rationally. New Engl. J
  24. Med., 369(26): 2474-2476
  25. Shaabani, A., Hooshmand, S.E. (2018). Malononitrile dimer as a privileged reactant in design and skeletal diverse synthesis of heterocyclic motifs. Mol. Divers., 1-18
  26. Gallagher, T.F., Fier-Thompson, S.M., Garigipati, R.S., Sorenson, M.E., Smietana, J.M., Lee, D., Bender, P.E., Lee, J.C., Laydon, J.T., Griswold, D.E. (1995). 2,4,5-Triarylimidazole inhibitors of IL-1 biosynthesis. Bioorg. Med. Chem. Lett., 5(11): 1171-1176
  27. Misono, M. (2001). Unique acid catalysis of heteropoly compounds (heteropolyoxo-metalates) in the solid state. Chem. Commun, 13): 1141-1152
  28. Chang, L.L., Sidler, K.L., Cascieri, M.A., de Laszlo, S., Koch, G., Li, B., MacCoss, M., Mantlo, N., O'Keefe, S., Pang, M. (2001). Substituted imidazoles as glucagon receptor antagonists. Bioorg. Med. Chem. Lett., 11(18): 2549-2553
  29. Shalini, K., Sharma, P.K., Kumar, N. (2010). Imidazole and its biological activities: A review. Der Chemica Sinica, 1(3): 36-47
  30. Gupta, D., Ghosh, N.N., Chandra, R. (2005). Synthesis and pharmacological evaluation of substituted 5-[4-[2-(6, 7-dimethyl-1, 2, 3, 4-tetrahydro-2-oxo-4-quinoxalinyl) ethoxy] phenyl] methylene] thiazolidine-2, 4-dione derivatives as potent euglycemic and hypolipidemic agents. Bioorg. Med. Chem. Lett., 15(4): 1019-1022
  31. Rosner, M., Billhardt-Troughton, U.-M., Kirsch, R., Kleim, J.-P., Meichsner, C., Riess, G., Winkler, I., Quinoxalines, a process for their preparation and their use, Google Patents???????, 1998
  32. Jones, Z., Groneberg, R., Drew, M., Eary, C. US Patent 20050282812, 2005
  33. Heravi, M.M., Daraie, M., Zadsirjan, V. (2015). Current advances in the synthesis and biological potencies of tri-and tetra-substituted 1H-imidazoles. Mol. Divers., 19(3): 577-623
  34. Ryu, T., Baek, Y., Lee, P.H. (2015). Synthesis of Pyrazines from Rhodium-Catalyzed Reaction of 2H-Azirines with N-Sulfonyl 1,2,3-Triazoles. J. Org. Chem., 80(4): 2376-2383
  35. Bin Ahmad, M., Lim, J.J., Shameli, K., Ibrahim, N.A., Tay, M.Y. (2011). Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules, 16(9): 7237-7248
  36. Govindan, S., Nivethaa, E., Saravanan, R., Narayanan, V., Stephen, A. (2012). Synthesis and characterization of chitosan-silver nanocomposite. Applied Nanoscience, 2(3): 299-303
  37. Shaabani, A., Sepahvand, H., Hooshmand, S.E., Borjian Boroujeni, M. (2016). Design, preparation and characterization of Cu/GA/Fe3O4@ SiO2 nanoparticles as a catalyst for the synthesis of benzodiazepines and imidazoles. Appl. Organomet. Chem., 30(6): 414-421
  38. Sharma, S.D., Hazarika, P., Konwar, D. (2008). An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetra-substituted imidazoles catalyzed by InCl3·3H2O. Tetrahedron Lett., 49(14): 2216-2220
  39. Teimouri, A., Chermahini, A.N. (2011). An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed via solid acid nano-catalyst. J. Mol. Catal. A: Chem., 346(1): 39-45
  40. Ghorbani-Vaghei, R., Amiri, M., Karimi-Nami, R., Toghraei-Semiromi, Z., Ghavidel, M. (2013). N,N,N',N'-Tetrabromobenzene-1,3-disulfonamide and poly (N-bromo-N-ethylbenzene-1,3-disulfonamide) as new and efficient catalysts for the synthesis of highly substituted 1,6-dihydropyrazine-2,3-dicarbonitrile derivatives. Mol. Divers., 17(2): 251-259
  41. Shaabani, A., Maleki, A., Hajishaabanha, F., Mofakham, H., Seyyedhamzeh, M., Mahyari, M., Ng, S.W. (2009). Novel syntheses of tetrahydrobenzodiazepines and dihydropyrazines via isocyanide-based multicomponent reactions of diamines. J. Comb. Chem., 12(1): 186-190

Last update:

No citation recorded.

Last update:

No citation recorded.