skip to main content

An Efficient Synthesis of 1,8-Dioxo-Octahydroxanthenes Derivatives Using Heterogeneous Ce-ZSM-11 Zeolite Catalyst

Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), 431004, India

Received: 5 Jan 2018; Revised: 25 May 2018; Accepted: 27 May 2018; Published: 4 Dec 2018; Available online: 14 Nov 2018.
Open Access Copyright (c) 2018 by Authors, Published by BCREC Group under

Citation Format:
Cover Image

The Ce-ZSM-11 zeolite has been used as an efficient catalyst for the one pot synthesis of 1,8-dioxo-octahydroxanthene derivatives from aromatic aldehyde and 5,5-dimethyl-cyclohexane-1,3-dione under reflux condition. The catalyst was characterized by Powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmer-Teller (BET) surface area analysis, and Temperature Programmed Desorption (TPD) techniques. This method provides several advantageous such as use of inexpensive catalyst, simple work-up procedure, high yield of desired product and reusability of catalyst. 

Fulltext View|Download
Keywords: Ce-ZSM-11 Zeolite; 1,8-Dioxo-octahydroxanthene; Aromatic Aldehyde; 5,5-Dimethyl-cyclohexane-1,3-dione
Funding: Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad–431004 (MS), India

Article Metrics:

  1. Niknam, K., Borazjani, N., Rashidian, R., Jamali, A. (2013). Silica-bonded N- Propylpiperazine Sodium N-Propionate as Recyclable Catalyst for Synthesis of 4H-Pyran Derivative. Chin. J. Catal., 34: 2245-2254
  2. Domling, A., Ugi, I. (2000). Multicomponent Reaction with Isocyanides. Angew. Chem. Int. Ed., 39: 3168-3210
  3. Kappe, C.O. (2000). Recent Advances in the Beginelli Dihydropyrimidone Synthesis. New Tricks from an Old Dog. Acc. Chem. Res., 33: 879-888
  4. Zhu, J., Bienayme, H. (2005). Multicomponant Reaction. Weinheim;Wiley-VCH
  5. El-Brashy, A.M., El-Sayed Metwally, M., El-Sepai, F.A. (2004). Spectrophotometric Determination of Some Fluoroquinolone Antibacterial by Binary Complex Formation with Xanthene Dyes. Farmaco, 59: 809-817
  6. Hafez, H.N., Hegab, M.I., Ahmed-Farag, I.S., El-Gazzar, A.B. (2008). A Facile Synthesis of Novel Spiro-Thioxanthene and Spiro-Xanthene-9’, 2[1,3,4] Thiadiazole Derivatives as Potential Analgesic and Anti-Inflammatory Agents. Bioorg. Med. Chem. Lett., 18: 4538-4543
  7. Poupelin, J.P., Saint-Ruf, G., Foussard-Blanpin, O., Marcisse, G., Uchida-Earnauf, G., Lacroix, R. (1978). Synthesis and Anti-Inflammatory Properties of Bis(2-hydroxy-1-naphthyl) Methane Derivatives. Eur. J. Med. Chem., 13: 67-71
  8. Mulakayala, N., Murthy, P.V.N.S., Rambabu, D., Aeluri, M., Adepu, R., Krishna, G.R., Reddy, C.M., Prasad, K.R.S., Chaitanya, M., Kumar, C.S., Basaveswara Rao, M.V., Pal, M. (2012). Catalsis by Molecular Iodine: A Rapid Synthesis of 1,8 Dioxo-octahydroxanthenes and their Evaluation as Potential Anticancer Agents. Bioorg. Med. Chem. Lett., 22: 2186-2191
  9. Murgra, D.C., Patel, M.P., Rajani, D.P., Patel, R.G. (2011). Synthesis and Identification of β-Aryloxyquinolines and their Pyrano[3,2-C] Chromene Derivatives as a New Class of Antimicrobial and Antituberculosis Agents. Eur. J. Med. Chem., 46: 4192-4200
  10. Ahmad, M., King, T.A., Ko, D.K., Cha, B.H., Lee, J. (2002). Performance and Photostability of Xanthene and Pyrromethene Laser Dyes in Sol-Gel Phases. J. Phys. D. Appl. Phys., 35: 1473-1476
  11. Hilderbrand, S.A., Weissleder, R. (2007). One-pot Synthesis of New Symmetric and Asymmetric Xanthene Dyes. Tetrahedron Lett., 48: 4383- 4385
  12. Karami, B., Jafar Hoseini, S., Eskandari, K., Ghasemi, A., Nasrabadi, H. (2012). Synthesis of Xanthene Derivatives by Employing Fe3O4 Nanoparticles as an Effective and Magnetically Recoverable Catalyst in Water. Catal. Sci. Technol., 2: 331-338
  13. Soliman, H.A., Salama, T.A. (2013). Silicon-mediated Highly Efficient Synthesis of 1,8 Dioxo-octahydroxanthenes and their Transformation to Novel Functionalized Pyrano-tetrazolo [1,5-A] Azepine Derivatives. Chinese Chemical Lett., 24: 404-406
  14. Ilangovan, A., Muralidharan, S., Sakthivel, P., Malayappasamy, S., Karuppusamy, S., Kaushik, M.P. (2013). Simple and Cost Effective Acid Catalysts for Efficient Synthesis of 9-Aryl-1,8 Dioxooctahydroxanthene. Tetrahedron Lett., 54: 491- 494
  15. Nazari, S., Keshavarz, M., Karami, B., Iravani, N., Vafaee-Nezhad, M. (2014). Imidazol-1-yl-acetic Acid as a Novel Green Bifunctional Organocatalyst for the Synthesis of 1, 8-Dioxooctahydroxanthene under Solvent Free Condition. Chinese Chemical Lett., 25: 317-320
  16. Sivaguru, P., Lalitha, A. (2014). Ceric Ammonium Nitrate Supported HY-Zeolite: An Efficient Catalyst for the Synthesis of 1,8-Dioxooctahydroxanthene. Chinese Chemical Lett., 25: 321-323
  17. Shirini, F., Yahyazadeh, A., Mohammadi, K. (2014). One-pot Synthesis of Various Xanthene Derivatives using Ionic Liquid 1,3-Disulfonic Acid Imidazolium Hydrogen Sulfate as an Efficient and Reusable Catalysts under Solvent Free Condition. Chinese Chemical Lett., 25: 341-347
  18. Lasemi, Z., Mehrasbi, E. (2015). ZnO Nanoparticles: An Efficient and Reuasable Catalyst for One-pot Synthesis of 1,8-Dioxo-octahydroxanthene. Res. Chem. Intermed., 41: 2855-2866
  19. Tabatabaeian, K., Zanjanchi, M.A., Mamaghani, M., Dadashi, A. (2016). Ruthenium Anchored on Multi-walled Arbon Nanotubes: An Efficient and Reusable Catalyst for the Synthesis of Xanthene. Res. Chem. Intermed., 42: 5049-5067
  20. Safa, K.D., Taheri, E., Allahvirdinesbat, M., Niaei, A. (2016). Sonochemical Synthesis of Xanthene Derivative using Zeolite Supported Transition Metal Catalyst in Aqueous Media. Res. Chem. Intermed., 42: 2989-3004
  21. Rana, V., Kanagaraj, K., Pitchamani, K. (2012). A Multicomponent, Solvent Free, One-pot Synthesis of Benzoxanthenone Catalyzed by HY Zeolite: Their Anti-Microbial and Cell Imaging Studies. Tetrahedron Lett., 53: 1018-1024
  22. Yu, Q., Chen, J., Zhang, Q., Li, C., Cui, Q. (2014). Micron ZSM-11 Microsperes Seed-assisted Synthesis of Hierarchiral Submicron ZSM-11 with Intergrowth Morphology. Mater. Lett., 120: 97-100
  23. Yu, Q., Li, C., Tang, X., Yi, H. (2016). Effect of Seeding on the Fast Crystallization of ZSM-11 Microspheres with Intergrowth Morphology and Small Particle Size. J. Porous Mater., 23: 273-284
  24. Bleken, F., Skistad, W., Barbera, K., Kustova, M., Bordiga, S., Beato, P., Lillerud, K.P., Svelle, S., Olsbye, U. (2011). Conversion of Methanol over 10-Ring Zeolites with Differing Volume at Channel Intersections: Comparison of TNU-9, IM-5, ZSM-11 and ZSM-5. Phys. Chem. Chem. Phys., 13: 2539-2549
  25. Zhang, L., Liu, H.J., Li, X.J., Xie, S.J., Wang, Y.Z., Xin, W.J., Liu, S.L., Xu, L.Y. (2010). Differences between ZSM-5 and ZSM-11 Zeolite Catalyst in 1-Hexane Aromatization and Isomerization. Fuel Process. Technol., 91: 449-455
  26. Bortnovsky, O., Sazama, P., Wichterlova, B. (2005). Cracking of Pentenes to C2-C4 Light Olefins over Zeolite and Zeotypes: Role of Topology and Acid Site Strength and Concentration. Appl. Catal. A, 287: 203-213
  27. Meng, X., Huang, H., Zhang, Q., Zhang, M., Li, C., Cui, Q. (2016). Conversion of Methanol into Light Olefins over ZSM-11 Catalyst in a Circulating Fluidized-bed Unit. Korean J. Chem. Eng., 33: 831- 837
  28. Gomez, S., Lerici, L., Saux, C., Perez, A.L., Brondino, C.D., Pierella, L., Pizzio, L. (2017). Fe/ZSM-11 as a Novel and Efficient Photo Catalyst to Degrade Dichlorvos on Water Solution. Appl. Catal. B Environ., 202: 580- 586
  29. Xie, P., Ma, Z., Zhou, H., Huang, C., Yue, Y., She, W., Xu, H., Hua, W., Gao, Z., (2014). Catalytic Decomposition of N2O over Cu-ZSM-11 Catalyst. Microporous Mesoporous Mater., 191: 112-117
  30. Anunziata, O.A., Mercado, G.V.G., Pierella, L.B. (2003). Catalytic Activation of Methane using N-Pentane as Co-reactant over Zn/H-ZSM-11 Zeolite. Catalysis Lett., 87: 167-171
  31. Anunziata, O.A., Cussa, J., Beltramone, A.R. (2011). Simultaneous Optimization of Methane Conversion and Aromatic Yields by Catalytic Activation with Ethane over Zn-ZSM-11 Zeolite: The Influence of the Zn Loading Factor. Catal. Today., 171: 36-42
  32. Lerici, L.C., Renzini, M.S., Sedran, U., Pierella, L.B. (2013). Tertiary
  33. Recycling of Low-density Polyethylene by Catalytic Cracking over ZSM-11 and BETA Zeolites Modified with Zn2+: Stability Study. Energy Fuels, 27: 2202-2208
  34. Magar, R.R., Pawar, G.T., Arbad, B.R., Lande, M.K. (2016). Fe-MCM-22: An Efficient Heterogeneous Catalyst for One Pot Four Component Synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5,10-dione Derivatives. Adv. Org. Chem. Lett., 3: 8-14
  35. Magar, R.R., Pawar, G.T., Gadekar, S.P., Lande, M.K. (2017). Fe-MCM-22 Catalyzed Multicomponent Synthesis of Dihydropyrano[2,3-c] pyrazole Derivatives, Iran. J. Catal., 7: 1-9
  36. Treacy, M.M.J., Higgins, J.B., (2001). Collection of Simulated XRD Powder Patterns for Zeolite, New York, NY: Elsevier
  37. Yu, Q., Cui, C., Zhang, Q., Chen, J., Li, Y., Sun, J., Li, C., Cui, Q., Yang, C., Shan, H. (2013). Hierarchical ZSM-11 with Intergrowth Structure: Synthesis, Characterization and Catalytic Properties. Journal of Energy Chemistry, 22: 761-768

Last update: 2021-07-25 09:03:36

No citation recorded.

Last update: 2021-07-25 09:03:36

  1. Carbon-based nanocatalyst: An efficient and recyclable heterogeneous catalyst for one-pot synthesis of gem-bisamides, hexahydroacridine-1,8-diones and 1,8-dioxo-octahydroxanthenes

    Kour J.. Journal of the Iranian Chemical Society, 16 (12), 2019. doi: 10.1007/s13738-019-01723-1
  2. Functionalized magnetic PAMAM dendrimer as an efficient nanocatalyst for a new synthetic strategy of xanthene pigments

    Sheikh S.. Journal of Hazardous Materials, 127 , 2020. doi: 10.1016/j.jhazmat.2020.122985