An Efficient Synthesis of 1,8-Dioxo-Octahydroxanthenes Derivatives Using Heterogeneous Ce-ZSM-11 Zeolite Catalyst

DOI: https://doi.org/10.9767/bcrec.13.3.2062.436-446
Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 05-01-2018
Published: 04-12-2018
Section: Original Research Articles
Fulltext PDF Tell your colleagues Email the author

The Ce-ZSM-11 zeolite has been used as an efficient catalyst for the one pot synthesis of 1,8-dioxo-octahydroxanthene derivatives from aromatic aldehyde and 5,5-dimethyl-cyclohexane-1,3-dione under reflux condition. The catalyst was characterized by Powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmer-Teller (BET) surface area analysis, and Temperature Programmed Desorption (TPD) techniques. This method provides several advantageous such as use of inexpensive catalyst, simple work-up procedure, high yield of desired product and reusability of catalyst. Copyright © 2018 BCREC Group. All rights reserved

Received: 5th January 2018; Revised: 25th May 2018; Accepted: 27th May 2018

How to Cite: Magar, R.R., Pawar, G.T., Gadekar, S.P., Lande, M.K. (2018). An Efficient Synthesis of  1,8-Dioxo-Octahydroxanthenes Derivatives Using Heterogeneous Ce-ZSM-11 Zeolite Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (3): 436-446 (doi:10.9767/bcrec.13.3.2062.436-446)

Permalink/DOI: https://doi.org/10.9767/bcrec.13.3.2062.436-446

 

Keywords

Ce-ZSM-11 Zeolite; 1,8-Dioxo-octahydroxanthene; Aromatic Aldehyde; 5,5-Dimethyl-cyclohexane-1,3-dione

  1. Rameshwar R. Magar 
    Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University , Aurangabad (M.S.), 431004, India
  2. Ganesh T. Pawar 
    Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University , Aurangabad (M.S.), 431004, India
  3. Sachin P. Gadekar 
    Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University , Aurangabad (M.S.), 431004, India
  4. Machhindra Karbhari Lande 
    Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University , Aurangabad (M.S.), 431004, India
    Professor Department of Chemistry
  1. Niknam, K., Borazjani, N., Rashidian, R., Jamali, A. (2013). Silica-bonded N- Propylpiperazine Sodium N-Propionate as Recyclable Catalyst for Synthesis of 4H-Pyran Derivative. Chin. J. Catal., 34: 2245-2254.
  2. Domling, A., Ugi, I. (2000). Multicomponent Reaction with Isocyanides. Angew. Chem. Int. Ed., 39: 3168-3210.
  3. Kappe, C.O. (2000). Recent Advances in the Beginelli Dihydropyrimidone Synthesis. New Tricks from an Old Dog. Acc. Chem. Res., 33: 879-888.
  4. Zhu, J., Bienayme, H. (2005). Multicomponant Reaction. Weinheim;Wiley-VCH.
  5. El-Brashy, A.M., El-Sayed Metwally, M., El-Sepai, F.A. (2004). Spectrophotometric Determination of Some Fluoroquinolone Antibacterial by Binary Complex Formation with Xanthene Dyes. Farmaco, 59: 809-817.
  6. Hafez, H.N., Hegab, M.I., Ahmed-Farag, I.S., El-Gazzar, A.B. (2008). A Facile Synthesis of Novel Spiro-Thioxanthene and Spiro-Xanthene-9’, 2[1,3,4] Thiadiazole Derivatives as Potential Analgesic and Anti-Inflammatory Agents. Bioorg. Med. Chem. Lett., 18: 4538-4543.
  7. Poupelin, J.P., Saint-Ruf, G., Foussard-Blanpin, O., Marcisse, G., Uchida-Earnauf, G., Lacroix, R. (1978). Synthesis and Anti-Inflammatory Properties of Bis(2-hydroxy-1-naphthyl) Methane Derivatives. Eur. J. Med. Chem., 13: 67-71.
  8. Mulakayala, N., Murthy, P.V.N.S., Rambabu, D., Aeluri, M., Adepu, R., Krishna, G.R., Reddy, C.M., Prasad, K.R.S., Chaitanya, M., Kumar, C.S., Basaveswara Rao, M.V., Pal, M. (2012). Catalsis by Molecular Iodine: A Rapid Synthesis of 1,8 Dioxo-octahydroxanthenes and their Evaluation as Potential Anticancer Agents. Bioorg. Med. Chem. Lett., 22: 2186-2191.
  9. Murgra, D.C., Patel, M.P., Rajani, D.P., Patel, R.G. (2011). Synthesis and Identification of β-Aryloxyquinolines and their Pyrano[3,2-C] Chromene Derivatives as a New Class of Antimicrobial and Antituberculosis Agents. Eur. J. Med. Chem., 46: 4192-4200.
  10. Ahmad, M., King, T.A., Ko, D.K., Cha, B.H., Lee, J. (2002). Performance and Photostability of Xanthene and Pyrromethene Laser Dyes in Sol-Gel Phases. J. Phys. D. Appl. Phys., 35: 1473-1476.
  11. Hilderbrand, S.A., Weissleder, R. (2007). One-pot Synthesis of New Symmetric and Asymmetric Xanthene Dyes. Tetrahedron Lett., 48: 4383- 4385.
  12. Karami, B., Jafar Hoseini, S., Eskandari, K., Ghasemi, A., Nasrabadi, H. (2012). Synthesis of Xanthene Derivatives by Employing Fe3O4 Nanoparticles as an Effective and Magnetically Recoverable Catalyst in Water. Catal. Sci. Technol., 2: 331-338.
  13. Soliman, H.A., Salama, T.A. (2013). Silicon-mediated Highly Efficient Synthesis of 1,8 Dioxo-octahydroxanthenes and their Transformation to Novel Functionalized Pyrano-tetrazolo [1,5-A] Azepine Derivatives. Chinese Chemical Lett., 24: 404-406.
  14. Ilangovan, A., Muralidharan, S., Sakthivel, P., Malayappasamy, S., Karuppusamy, S., Kaushik, M.P. (2013). Simple and Cost Effective Acid Catalysts for Efficient Synthesis of 9-Aryl-1,8 Dioxooctahydroxanthene. Tetrahedron Lett., 54: 491- 494.
  15. Nazari, S., Keshavarz, M., Karami, B., Iravani, N., Vafaee-Nezhad, M. (2014). Imidazol-1-yl-acetic Acid as a Novel Green Bifunctional Organocatalyst for the Synthesis of 1, 8-Dioxooctahydroxanthene under Solvent Free Condition. Chinese Chemical Lett., 25: 317-320.
  16. Sivaguru, P., Lalitha, A. (2014). Ceric Ammonium Nitrate Supported HY-Zeolite: An Efficient Catalyst for the Synthesis of 1,8-Dioxooctahydroxanthene. Chinese Chemical Lett., 25: 321-323.
  17. Shirini, F., Yahyazadeh, A., Mohammadi, K. (2014). One-pot Synthesis of Various Xanthene Derivatives using Ionic Liquid 1,3-Disulfonic Acid Imidazolium Hydrogen Sulfate as an Efficient and Reusable Catalysts under Solvent Free Condition. Chinese Chemical Lett., 25: 341-347.
  18. Lasemi, Z., Mehrasbi, E. (2015). ZnO Nanoparticles: An Efficient and Reuasable Catalyst for One-pot Synthesis of 1,8-Dioxo-octahydroxanthene. Res. Chem. Intermed., 41: 2855-2866.
  19. Tabatabaeian, K., Zanjanchi, M.A., Mamaghani, M., Dadashi, A. (2016). Ruthenium Anchored on Multi-walled Arbon Nanotubes: An Efficient and Reusable Catalyst for the Synthesis of Xanthene. Res. Chem. Intermed., 42: 5049-5067.
  20. Safa, K.D., Taheri, E., Allahvirdinesbat, M., Niaei, A. (2016). Sonochemical Synthesis of Xanthene Derivative using Zeolite Supported Transition Metal Catalyst in Aqueous Media. Res. Chem. Intermed., 42: 2989-3004.
  21. Rana, V., Kanagaraj, K., Pitchamani, K. (2012). A Multicomponent, Solvent Free, One-pot Synthesis of Benzoxanthenone Catalyzed by HY Zeolite: Their Anti-Microbial and Cell Imaging Studies. Tetrahedron Lett., 53: 1018-1024.
  22. Yu, Q., Chen, J., Zhang, Q., Li, C., Cui, Q. (2014). Micron ZSM-11 Microsperes Seed-assisted Synthesis of Hierarchiral Submicron ZSM-11 with Intergrowth Morphology. Mater. Lett., 120: 97-100.
  23. Yu, Q., Li, C., Tang, X., Yi, H. (2016). Effect of Seeding on the Fast Crystallization of ZSM-11 Microspheres with Intergrowth Morphology and Small Particle Size. J. Porous Mater., 23: 273-284.
  24. Bleken, F., Skistad, W., Barbera, K., Kustova, M., Bordiga, S., Beato, P., Lillerud, K.P., Svelle, S., Olsbye, U. (2011). Conversion of Methanol over 10-Ring Zeolites with Differing Volume at Channel Intersections: Comparison of TNU-9, IM-5, ZSM-11 and ZSM-5. Phys. Chem. Chem. Phys., 13: 2539-2549.
  25. Zhang, L., Liu, H.J., Li, X.J., Xie, S.J., Wang, Y.Z., Xin, W.J., Liu, S.L., Xu, L.Y. (2010). Differences between ZSM-5 and ZSM-11 Zeolite Catalyst in 1-Hexane Aromatization and Isomerization. Fuel Process. Technol., 91: 449-455.
  26. Bortnovsky, O., Sazama, P., Wichterlova, B. (2005). Cracking of Pentenes to C2-C4 Light Olefins over Zeolite and Zeotypes: Role of Topology and Acid Site Strength and Concentration. Appl. Catal. A, 287: 203-213.
  27. Meng, X., Huang, H., Zhang, Q., Zhang, M., Li, C., Cui, Q. (2016). Conversion of Methanol into Light Olefins over ZSM-11 Catalyst in a Circulating Fluidized-bed Unit. Korean J. Chem. Eng., 33: 831- 837.
  28. Gomez, S., Lerici, L., Saux, C., Perez, A.L., Brondino, C.D., Pierella, L., Pizzio, L. (2017). Fe/ZSM-11 as a Novel and Efficient Photo Catalyst to Degrade Dichlorvos on Water Solution. Appl. Catal. B Environ., 202: 580- 586.
  29. Xie, P., Ma, Z., Zhou, H., Huang, C., Yue, Y., She, W., Xu, H., Hua, W., Gao, Z., (2014). Catalytic Decomposition of N2O over Cu-ZSM-11 Catalyst. Microporous Mesoporous Mater., 191: 112-117.
  30. Anunziata, O.A., Mercado, G.V.G., Pierella, L.B. (2003). Catalytic Activation of Methane using N-Pentane as Co-reactant over Zn/H-ZSM-11 Zeolite. Catalysis Lett., 87: 167-171.
  31. Anunziata, O.A., Cussa, J., Beltramone, A.R. (2011). Simultaneous Optimization of Methane Conversion and Aromatic Yields by Catalytic Activation with Ethane over Zn-ZSM-11 Zeolite: The Influence of the Zn Loading Factor. Catal. Today., 171: 36-42.
  32. Lerici, L.C., Renzini, M.S., Sedran, U., Pierella, L.B. (2013). Tertiary
  33. Recycling of Low-density Polyethylene by Catalytic Cracking over ZSM-11 and BETA Zeolites Modified with Zn2+: Stability Study. Energy Fuels, 27: 2202-2208.
  34. Magar, R.R., Pawar, G.T., Arbad, B.R., Lande, M.K. (2016). Fe-MCM-22: An Efficient Heterogeneous Catalyst for One Pot Four Component Synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5,10-dione Derivatives. Adv. Org. Chem. Lett., 3: 8-14
  35. Magar, R.R., Pawar, G.T., Gadekar, S.P., Lande, M.K. (2017). Fe-MCM-22 Catalyzed Multicomponent Synthesis of Dihydropyrano[2,3-c] pyrazole Derivatives, Iran. J. Catal., 7: 1-9.
  36. Treacy, M.M.J., Higgins, J.B., (2001). Collection of Simulated XRD Powder Patterns for Zeolite, New York, NY: Elsevier
  37. Yu, Q., Cui, C., Zhang, Q., Chen, J., Li, Y., Sun, J., Li, C., Cui, Q., Yang, C., Shan, H. (2013). Hierarchical ZSM-11 with Intergrowth Structure: Synthesis, Characterization and Catalytic Properties. Journal of Energy Chemistry, 22: 761-768.