skip to main content

Liquefaction Behaviors of Oil Palm Frond and Bamboo in 1-Butyl-3-Methylimidazolium Chloride

Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Malaysia

Received: 28 Nov 2017; Revised: 4 Jun 2018; Accepted: 9 Jun 2018; Available online: 14 Nov 2018; Published: 4 Dec 2018.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2018 by Authors, Published by BCREC Group under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Oil palm and bamboo are two of the most widely used biomass in the world nowadays as they can be converted into many valuable products. However, they are very difficult to be hydrolyzed and converted into other products because of their tight and strong hydrogen bonding between the lignin and polysaccharides. Ionic liquid (IL) is said to be the most ideal solvent to dissolve those biomass. Thus, in this research, 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) was chosen to liquefy oil palm frond (OPF) and bamboo. The objective of this research was to compare the reaction behaviors of OPF and bamboo in [BMIM][Cl] at different treatment time. OPF and bamboo were heated at 120 °C for 2-24 hours under atmospheric pressure. Two fractions were obtained, namely [BMIM][Cl]-soluble and -nonsoluble. The non-soluble fractions were characterized using TGA, FTIR, XRD and FESEM while the soluble fractions were analyzed using HPLC. Based on the results obtained from the analyses, the effectiveness of [BMIM][Cl] in dissolving OPF was higher than bamboo as it was made up of less complex and compact cell wall structure. This structure allowed the diffusion of [BMIM][Cl] into the interior of OPF more easily to break down the hydrogen bonding network. Holocelluloses and lignin of OPF solubilized into [BMIM][Cl] more rapidly due to the greater distortion in hydrogen bonding network of the cell wall with the increase in treatment time compared to bamboo. Moreover, the mono-sugars of OPF were formed much easily than bamboo after short period (2 hours) of treatment. 

Fulltext View|Download
Keywords: Oil Palm Frond; Bamboo; Ionic Liquid; Liquefaction; Dissolution
Funding: Universiti Teknologi Malaysia (UTM) for supporting this research under Fundamental Research Grant Scheme (vote 4F160)

Article Metrics:

  1. Verheye, W. (2007). Growth and Production of Oil Palm. In Verheye, W. (ed.) Encyclopedia of Life Support Systems (EOLSS). Oxford, UK: UNESCO-EOLSS Publishers
  2. Sime Darby. (3 March 2015). Palm Oil Facts and Figures URL http://www.simedarby.co- m/upload/Palm_Oil_Facts_and_Figures.pdf
  3. Shibata, M., Varman, M., Tono, Y., Miyafuji, H., Saka, S. (2008). Characterization in Chemical Composition of the Oil Palm (Elaeis Guineensis). Journal of the Japan Institute of Energy, 87(5): 383-388
  4. Wang, D., Shen, S.J. (1987). Bamboos of China. Oregon: Timber Press
  5. Ahmad, M. (2000). Analysis of Calcutta Bamboo for Structural Composite Materials. Doctor Philosophy, Universiti Teknologi MARA
  6. Liese, W. (1985). Anatomy and Properties of Bamboo. In International Bamboo Workshop, 197-208. Hangzhou, China
  7. Fengel, D., Wegener, G. (1983). Wood: Chemistry, Ultrastructure and Reactions. Berlin: Walter de Gruyter and Company
  8. Howard, R.L., Abotsi, E., van Rensburg, J., Howard, S. (2003). Lignocellulose Biotechnology: Issues of Bioconversion and Enzyme Production. African Journal of Biotechnology, 2(12): 602-609
  9. Chandra, R.P., Bura, R., Mabee, W.E., Berlin, A., Pan, B., Saddler, J.N. (2007). Substrate Pretreatment: The Key to Effective Enzymatic Hydrolysis of Lignocellulosics? Advances in Biochemical Engineering/Biotechnology, 108: 67-93
  10. Bonhôte, P., Dias, A.P., Papageorgiou, N., Kalyansundaram, K., Gratzel, M. (1996). Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorganic Chemistry, 35(5): 1168-1178
  11. Brennecke, J.F., Maginn, E.J. (2001). Ionic Liquids: Innovative Fluids for Chemical Processing. AIChE Journal, 47(11): 2384-2389
  12. Hapiot, P., Lagorst, C. (2008). Electrochemical Reactivity in Room-temperature Ionic Liquids. Chemical Reviews, 108(7): 2238-2264
  13. Olivier-Bourbigou, H., Magna, L., Morvan, D. (2010). Ionic Liquids and Catalysis: Recent Progress from Knowledge to Applications. Applied Catalysis A: General, 373(1-2): 1-56
  14. Kilpeläinen, I., Xie, H., King, A., Granstrom, M., Heikkinen, S., Argyropoulos, D.S. (2007). Dissolution of Wood in Ionic Liquids. Journal of Agricultural and Food Chemistry, 55(22): 9142-9148
  15. Yokoo, T., Miyafuji, H. (2014). Reaction Behavior of Wood in an Ionic Liquid, 1-Ethylpyridinium Bromide. Journal of Wood Science, 60(5): 339-345
  16. Nakamura, A., Miyafuji, H., Saka, S. (2010). Liquefaction Behavior of Western Red Cedar and Japanese Beech in the Ionic Liquid 1-Ethyl-3-methylimidazolium Chloride. Holzforschung, 64(3): 289-294
  17. Fort, D.A., Remsing, R.C., Swatloksi, R.P., Moyna, P., Moyna, G., Rogers, R.D. (2007). Can Ionic Liquids Dissolve Wood? Processing and Analysis of Lignocellulosic Materials with 1-n-Butyl-3-methylimidazolium Chloride. The Royal Society of Chemistry, 9:63-69
  18. Ramli, M., Amin, N.A.S., Ware, I. (2014). Optimization of Oil Palm Fronds Pretreatment Using Ionic Liquid for Levulinic Acid Production. Jurnal Teknologi, 71(1): 33-41
  19. Tan, H.T., Lee, K.T., Mohamed, A.R. (2011). Pretreatment of Lignocellulosic Palm Biomass Using A Solvent-Ionic Liquid [BMIM]Cl for Glucose Recovery: An Optimisation Study Using Response Surface Methodology. Carbohydrate Polymers, 83(4): 1862-1868
  20. Kureel, S., Pandey, R., Bhanja, H. (2014). Pre-treatment of Bamboo with 1-Butyl-3-methylimidazolium Chloride [BmimCl] for Production of Fermentable Sugars by Enzymatic Hydrolysis. International Journal of Emerging Technology and Advanced Engineering, 4(7): 733-735
  21. Wang, F., Li, S., Sun, Y., Han, H., Zhang, B., Hu, B., Gao, Y., Hu, X. (2017). Ionic Liquids as Efficient Pretreatment Solvents for Lignocellulosic Biomass. RSC Advances, 7: 47990-47998
  22. Feng, L., Chen, Z.I. (2008). Research Progress on Dissolution and Functional Modification of cellulose in Ionic Liquids. Journal of Molecular Liquids, 142(1-3): 1-5
  23. Swatloski, R.P., Spear, S.K., John, D.D.H.J., Rogers, R.D. (2002). Dissolution of Cellulose with Ionic Liquids. Journal of American Chemical Society, 124(18): 4974-4975
  24. Wei, L., Li, K., Ma, Y., Hou, X. (2012). Dissolving Lignocellulosic Biomass in a 1-Butyl-3-methylimidaozlium Cloride-water Mixture. Industrial Crops and Products, 37(1): 227-234
  25. Jakab, E., Faix, O, Till, F. (1997). Thermal Decomposition of Milled Wood Lignins Studied by Thermogravimetry / Mass Spectrometry. Journal of Analytical and Applied Pyrolysis, 40-41: 171-186
  26. Parmon, M.K.J. (2014). The Liquefaction of Nipa Frond in an Ionic Liquid, 1-Butyl-3-methylimidazolium Chloride. Bachelor of Engineering (Chemical), Universiti Teknologi Malaysia
  27. Kamarludin, S.N.C., Ubong, S., Idris, N., Azmi, I.S., Jainal, M.S., Jalil, R., Omar, W.S. A.W.Z.M.T.E.T., Safaai, N.S.M., Azizan, A. (2014). Imidazolium-based Ionic Liquid Dissolution Influence on Crystallinity of Oil Palm Frond, Oil Palm Trunk and Elephant Grass Lignocellulosic Biomass. Advanced Materials Research, 911: 307-313
  28. Shibata, M., Yamazoe, K., Kuribayashi, M., Okuyama, Y. (2013). All-wood Biocomposites by Partial Dissolution of Wood Flour in 1-Butyl-3-methylimidazolium Chloride. Journal of Applied Polymer Science, 127(6): 4802-4808
  29. Muhammad, N., Man, Z., Bustam, M.A., Mutalib, M.I.A., Wilfred, C.D., Rafiq, S. (2011). Dissolution and Delignification of Bamboo Biomass using Amino Acid-Based Ionic Liquid. Applied Biochemistry and Biotechnology, 165(3-4): 998-1009
  30. Wang, X., Li, H., Cao, Y., Tang, Q. (2011). Cellulose Extraction from Wood Chip in An Ionic Liquid 1-Allyl-3-methylimidazolium Chloride (AmimCl). Bioresource Technology, 102(17): 7959-7965
  31. Katinonkul, W., Lee, J.S., Ha, S.H., Park, J.Y. (2012). Enhancement of Enzymatic Digestibility of Oil Palm Empty Fruit Bunch by Ionic-liquid Pretreatment. Energy, 47(1): 11-16

Last update:

No citation recorded.

Last update: 2021-11-30 07:53:00

No citation recorded.