Selective Hydrogenation of Dodecanoic Acid to Dodecane-1-ol Catalyzed by Supported Bimetallic Ni-Sn Alloy

*Rodiansono Rodiansono orcid scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36.0 Banjarbaru South Kalimantan, Indonesia
Muhammad Iqbal Pratama  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36.0 Banjarbaru South Kalimantan, Indonesia
Maria Dewi Astuti  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36.0 Banjarbaru South Kalimantan, Indonesia
Abdullah Abdullah  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36.0 Banjarbaru South Kalimantan, Indonesia
Agung Nugroho  -  Department of Agro-industrial Engineering, Faculty of Agriculture, Lambung Mangkurat University, Jl. A. Yani Km 36.0 Banjarbaru South Kalimantan, Indonesia
Susi Susi  -  Department of Agro-industrial Engineering, Faculty of Agriculture, Lambung Mangkurat University, Jl. A. Yani Km 36.0 Banjarbaru South Kalimantan, Indonesia
Received: 26 Nov 2017; Revised: 24 Dec 2017; Accepted: 24 Jan 2018; Published: 1 Aug 2018; Available online: 11 Jun 2018.
Open Access Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract

Selective hydrogenation of dodecanoic acid over supported bimetallic Ni-Sn alloy catalysts into dodecane-1-ol is demonstrated. Bimetallic nickel-tin supported on titanium oxide (Ni-Sn(1.5)/TiO2) and gamma-alumina (Ni-Sn(1.5)/g-Al2O3); 1.5 = Ni/Sn molar ratio) were synthesized via hydrothermal method in a sealed-Teflon autoclave reactor at 150 oC for 24 h, then followed by reducing with hydrogen gas at 400 oC for 1.5 h. The synthesized catalysts were characterized by means of XRD, IC-AES, N2-adsorption (BET method), H2-chemisorption, and NH3-TPD. Bimetallic Ni-Sn(1.5)/TiO2 catalyst was found to be effective for hydrogenation of dodecanoic acid (>99 % conversion) to dodecane-1-ol (93% yield) at 160 oC, 30 bar H2, and 20 h and the highest dodecane-1-ol (97 % yield) was obtained at initial pressure of H2, 50 bar. An increase of reaction temperature slightly enhanced the degree of hydrodeoxygenation of dodecanoic acid to produce dodecane over both Ni-Sn(1.5)/TiO2 and Ni-Sn(1.5)/g-Al2O3 catalysts. Copyright © 2018 BCREC Group. All rights reserved

Received: 26th November 2017; Revised: 24nd December 2017; Accepted: 24th January 2018; Available online: 11st June 2018; Published regularly: 1st August 2018

How to Cite: Rodiansono, R. Pratama, M.I., Astuti, M.D., Abdullah, A., Nugroho, A., Susi, S. (2018). Selective Hydrogenation of Dodecanoic Acid to Dodecane-1-ol Catalyzed by Supported Bimetallic Ni-Sn Alloy. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 311-319 (doi:10.9767/bcrec.13.2.1790.311-319)

 

Keywords: Bimetallic Nickel-Tin Alloy Catalyst; Dodecane; Dodecanoic Acid; Dodecane-1-ol; Hydrogenation
Funding: BPDP-Sawit, Ministry of Finances through GRK-2016 under contract number PRJ-49/2016. Partial these works were supported by Insentif Riset Pratama Individu (IRPI) FY 2016-2017 and International Publication Project of DGHE FY 2016 under Grant Number of DIPA

Article Metrics:

  1. Biermann, U., Bornscheuer, U., Meier, M.A.R., Metzger, J.O., Schafer, H.J. (2011). Oils and Fats as Renewable Raw Materials in Chemistry. Angew. Chem., Int. Ed. 50: 3854-3871
  2. Turek, T., Trimm, D.L., Cant, N.W. (1994). The Catalytic Hydrogenolysis of Esters to Alcohols. Catal. Rev. Sci. Eng. 36: 645-683
  3. Adkins, H., Connor, R. (1931). The Catalytic Hydrogenation of Organic Compounds over Copper Chromite. J. Am. Chem. Soc. 53: 1091-1095
  4. Rozmysłowicz, B., Kirilin, A., Aho, A., Manyar, H.G., Hardacre, C., Warna, J., Salmi, T., Murzin, D.Y. (2015). Selective Hydrogenation of Fatty Acids to Alcohols over Highly Dispersed ReOx/TiO2 Catalyst. J. Catal. 328: 197-207
  5. Manyar, H.G., Paun, C., Rilus, R., Rooney, D.W., Thompson, J.M., Hardacre, C. (2010). Highly Selective and Efficient Hydrogenation of Carboxylic Acids to Alcohols using Titania Supported Pt Catalysts. Chem. Commun. 46: 6279-6281
  6. Gallezot, P., Cerino, P.J., Blanc, B., Flèche, G., Fuertes, P. (1994). Glucose Hydrogenation on Promoted Raney-nickel Catalysts. J. Catal. 46: 93-102
  7. Alonso, D.M., Wettstein, S.G., Dumesic, J.A. (2012). Bimetallic Catalysts for Upgrading of Biomass to Fuels and Chemicals. Chem. Soc. Rev. 41: 8075-8098
  8. Pritchard, J., Filonenko, G.A., van Putten, R., Hensen, E.J.M., Pidko, E.A. (2015). Heterogeneous and Homogeneous Catalysis for the Hydrogenation of Carboxylic Acid Derivatives: History, Advances and Future Directions, Chem. Soc. Rev. 44: 3808-3833
  9. Besson, M., Gallezot, P., Pine, C. (2014). Conversion of Biomass into Chemicals over Metal Catalysts. Chem. Rev. 114: 1827-1870
  10. Huang, C., Zhang, H., Zhao, Y., Chen, S., Liu, Z. (2012). Diatomite-supported Pd-M (M = Cu, Co, Ni) Bimetal Nanocatalysts for Selective Hydrogenation of Long-chain Aliphatic Esters. J. Coll. Interface Sci. 386: 60-65
  11. Shao, Y., Xia, Q., Liu, X., Lu, G., Wang, Y. (2015). Pd/Nb2O5/SiO2 Catalyst for the Direct Hydrodeoxygenation of Biomass-related Compounds to Liquid Alkanes under Mild Conditions. ChemSusChem. 8: 1761-1767
  12. Miyake, T., Makino, T., Taniguchi, S. I., Watanuki, H., Niki, T., Shimizu, S., Kojima, Y., Sano, M. (2009). Alcohol Synthesis by Hydrogenation of Fatty Acid Methyl Esters on Supported Ru–Sn and Rh–Sn Catalysts. Appl. Catal. A. 364: 108-112
  13. Deshpande, V. M., Patterson, W. R., Narasimhan, C. S. (1990). Studies on Ruthenium-tin Boride Catalysts I. Characterization. J. Catal. 121: 165-173
  14. Deshpande, V.M., Ramnarayan, K., Narasimhan, C.S. (1990). Studies on Ruthenium-tin Boride Catalysts II. Hydrogenation of Fatty Acid Esters to Fatty Alcohols. J. Catal. 21: 174-182
  15. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2012). Highly Efficient and Selective Hydrogenation of Unsaturated Carbonyl Compounds using Ni–Sn Alloy Catalysts. Catal. Sci. Technol. 2: 2139-2145
  16. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2012). A Novel Preparation Method of Ni-Sn Alloy Catalysts Supported on Aluminium Hydroxide: Application to Chemoselective Hydrogenation of Unsaturated Carbonyl Compounds. Catal. Lett. 41(8): 769-771
  17. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2014). Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol. Bull. Chem. React. Eng. Catal. 9(1): 53-59
  18. Rodiansono, R., Ghofur, A., Astuti, M.D., Sembiring, K.C. (2015). Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bull. Chem. React. Eng. Catal. 10(2): 192-200
  19. Rodiansono, R., Astuti, M.D., Hara, T., Ichikuni, N., Shimazu, S. (2016). Efficient Hydrogenation of Levulinic Acid in Water using a Supported Ni-Sn Alloy on Aluminium Hydroxide Catalysts. Catal. Sci. Technol. 6: 2955-2961
  20. Lowell, S., Shields, J. E., Thomas, M. A., Thommes, M. (2004). Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publishers, Netherlands, Chapter 8
  21. Bartholomew, C.H., Pannel, R.B., Butler, J.L. (1980). Support and Crystallite Size Effects in CO Hydrogenation on Nickel. J. Catal. 65: 335-347
  22. Bartholomew, C.H., Pannel, R.B. (1980). The Stoichiometry of Hydrogen and Carbon Monoxide Chemisorption on Alumina- and Silica-supported Nickel. J. Catal. 65: 390-401
  23. Rodiansono, R., Astuti, M.D., Khairi, S., Shimazu, S. (2016). Selective Hydrogenation of Biomass-derived Furfural over Supported Ni3Sn2 Alloy: Role of Supports. Bull. Chem. React. Eng. Catal. 11(1): 1-9
  24. Powder Diffraction File, JCPDS-International Center for Diffraction Data (ICDDS), 1991
  25. Dumitriu, E., Hulea, V.J. (2003) Effects of Channel Structures and Acid Properties of Large Pore Zeolites in the Liquid Phase Tert-butylation of Phenol. J. Catal. 218: 249-257
  26. Khandan, N., Kazemeini, M., Aghaziarati, M. (2008). Determining an Optimum Catalyst for Liquid Phase Dehydration of Methanol to Dimethyl Ether. J. Appl. Catal. A.349: 6-12
  27. Dandekar, A., Vannice, M.A. (1999). Crotonaldehyde Hydrogenation on Pt/TiO2 and Ni/TiO2 SMSI Catalysts. J. Catal. 183: 344-354
  28. Sordelli, L., Psaro, R., Vlaic, G., Cepparo, A., Recchia, S., Fusi, A., Zanoni, R. (1999). EXAFS Studies of Supported Rh–Sn Catalysts for Citral Hydrogenation. J. Catal. 182: 186-198
  29. Margitfalvi, J. L., Tompos, A., Kolosova, I., Valyon, J. (1998). Reaction Induced Selectivity Improvement in the Hydrogenation of Crotonaldehyde over Sn-Pt/SiO2 Catalysts. J. Catal. 174: 246-249

Last update: 2021-04-16 19:36:01

No citation recorded.

Last update: 2021-04-16 19:36:02

  1. The effect of solvent in the hydrogenation of lauric acid to lauryl alcohol using Ru-Fe/TiO2 catalyst

    Ibrahim . IOP Conference Series: Materials Science and Engineering, 127 (1), 2020. doi: 10.1088/1757-899X/980/1/012012
  2. One-pot selective conversion of C5-furan into 1,4-pentanediol over bulk Ni-Sn alloy catalysts in an ethanol/H2O solvent mixture

    Rodiansono . Green Chemistry, 21 (9), 2019. doi: 10.1039/c8gc03938k