Simple and Green Adipic Acid Synthesis from Cyclohexanone and/or Cyclohexanol Oxidation with Efficient (NH4)xHyMzPMo12O40 (M: Fe, Co, Ni) Catalysts

DOI: https://doi.org/10.9767/bcrec.13.2.1749.386-392
Copyright (c) 2018 Bulletin of Chemical Reaction Engineering & Catalysis
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Cover Image

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Submitted: 12-11-2017
Published: 11-06-2018
Section: Original Research Articles
Fulltext PDF Tell your colleagues Email the author

The oxidation of cyclohexanone and/or cyclohexanol to adipic acid (AA) was performed at 90 °C with a reaction time of 20 h, in the presence of H2O2 as oxidant and transition metal substituted ammonia polyoxometalates of formula, (NH4)xHyMzPMo12O40 (M: Fe, Co, or Ni,  and x = 2.5 or 2.28) as catalysts.  The catalytic results showed that the AA yield is sensitive to the transition metal nature and to the reaction conditions (sample weight and substrate amount). The (NH4)2.29H0.39Co0.16PMo12O40 was found to be the better catalytic system toward AA synthesis from cyclohexanone oxidation, with 40% of AA yield  Copyright © 2018 BCREC Group. All rights reserved

Received: 12nd November 2017; Revised: 18th February 2018; Accepted: 19th February 2018; Available online: 11st June 2018; Published regularly: 1st August 2018

How to Cite: Mouanni, S., Mazari, T., Benadji, S., Dermeche, L., Marchal-Roch, C., Rabia, C. (2018). Simple and Green Adipic Acid Synthesis from Cyclohexanone and/or Cyclohexanol Oxidation with Efficient (NH4)xHyMzPMo12O40 (M: Fe, Co, Ni) Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 386-392 (doi:10.9767/bcrec.13.2.1749.386-392)

 

Keywords

Keggin mixed salts; Oxidation; Hydrogen peroxide; Cyclohexanone; cyclohexanol; Adipic acid

  1. Sihem Mouanni 
    Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32, El-Alia, 16111 Bab-Ezzouar, Alger, Algeria
  2. Tassadit Mazari 
    1Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32, El-Alia, 16111 Bab-Ezzouar, Alger, Algeria 2Département de Chimie, Faculté des Sciences, Université Mouloud Mammeri (UMMTO), 15000 Tizi Ouzou, Algeria
  3. Sihem Benadji 
    Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32, El-Alia, 16111 Bab-Ezzouar, Alger, Algeria
  4. Leila Dermeche 
    1Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32, El-Alia, 16111 Bab-Ezzouar, Alger, Algeria 2Département de Chimie, Faculté des Sciences, Université Mouloud Mammeri (UMMTO), 15000 Tizi Ouzou, Algeria
  5. Catherine Marchal-Roch 
    ILV-UMR 8180 CNRS, Université de Versailles -St Quent -en-Yvelines, Bâtiment Lavoisier, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
  6. Cherifa Rabia 
    Laboratoire de Chimie du Gaz Naturel, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32, El-Alia, 16111 Bab-Ezzouar, Alger, Algeria
  1. Bonnet, D., Ireland, T., Fache, E., Simonato, J.P. (2006). Innovative direct synthesis of adipic acid by air oxidation of cyclohexane. Green Chem., 8: 556-559
  2. Shimizu, A., Tanaka, K., Ogawa, H., Matsuoka, Y., Fujimori, M., Nagamori, Y., Hamachi, H. (2003). Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen B. Chem. Soc. Jpn., 76: 1993-2001
  3. Chavan, S.A., Srinivas, D., Ratnasamy, P. (2002). Oxidation of Cyclohexane, Cyclohexanone, and Cyclohexanol to Adipic Acid by a Non-HNO3 Route over Co/Mn Cluster Complexes. J. Catal., 212: 39-45
  4. Sato, K., Aoki, M., Noyori, R. (1998). A ‘‘green’’ route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science, 281: 1646-1647.
  5. Vyver, S.V., Román-Leskov, Y. (2013). Emerging catalytic processes for the production of adipic acid. Catal. Sci. Technol., 3: 1465-1479.
  6. Nomiya, K., Miwa, M., Sugaya, Y. (1984). Catalysis by heteropolyacid-VII. catalytic oxidation of cyclohexanol by dodecamolybdate. Polyhedron, 3: 607-610
  7. Davis, D.D., Kemp, D.R. AdipicAcid in ECT, 2000
  8. Dickinson, R.E., Cicerone, R.J. (1986). Future Global Warming from Atmospheric Trace Gases. Nature, 319: 109-115
  9. Li, J., Luo, G., Chu, Y., Wei, F. (2012). Experimental and modeling analysis of NO reduction by CO for a FCC regeneration process. Chem. Eng. J., 184: 168-175
  10. Wang, Y., Geng, J., Guo, G., Wang, C., Liu, S. (2011). N2O production in anaerobic/anoxic denitrifying phosphorus removal process: The effects of carbon sources shock. Chem. Eng. J., 172: 999-1007
  11. Hill, C.L., Prosser-McCartha, C.M. (1995). Homogeneous Catalysis by Transition Metal Oxygen Anion Clusters. Coord. Chem. Rev., 143: 407-455
  12. Okuhara, T., Mizuno, N., Misono, M. (1996). Catalytic Chemistry of Heteropoly Compounds. Adv. Catal., 41: 113-252
  13. Neumann, R. (1998). Polyoxometalate Complexes in Organic Oxidation Chemistry. Prog. Inorg. Chem., 47: 317-370
  14. Kozhevnikov, I.V. (1998). Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. Chem. Rev., 98: 171-198
  15. Mizuno, N., Kamata, K., and Yamaguchi, K. (2011). Liquid-phase selective oxidation by multimetallic active sites of polyoxometalate-based molecular catalysts. Top Organomet. Chem., 37: 127-160
  16. Vazylyev, M., Sloboda-Rozner, D., Haimov, A.D., Maayan, G., Neumann, R. (2005). Strategies for oxidation catalyzed by polyoxometalates at the interface of homogeneous and heterogeneous catalysis. Top Catal., 34 (1-4): 93-99
  17. Mizuno, N., Kamata, K., Yamaguchi, K. (2011). Liquid-Phase Selective Oxidation by Multimetallic Active Sites of Polyoxometalate-Based Molecular Catalysts Top Organomet. Chem., 37: 127-160
  18. Mazari, T., Benadji, S., Tahar, A., Dermeche, L., Rabia, C. (2013). Liquid Phase synthesis of adipic acid using Keggin-type phosphomolybdates catalysts. J. Mater. Sci. Eng. B. 3(3): 146-151
  19. Benadji, S., Mazari, T., Dermeche, L., Salhi, N., Cadot, E., Rabia, C. (2013). Preparation, Characterization and Reactivity of Keggin Type Phosphomolybdates, H3−2xNixPMo12O40 and (NH4)3−2xNixPMo12O40, for Adipic Acid Synthesis. Catal. Lett., 143: 749-755
  20. Tahar, A., Benadji, S., Mazari, T., Dermeche., L. Roch-Marchal, C., Rabia, C. (2015). Preparation, Characterization and Reactivity of Keggin Type Phosphomolybdates, H3−2x Ni x PMo12O40 and (NH4)3−2xNixPMo12O40, for Adipic Acid Synthesis. Catal. Lett., 145: 569-575
  21. Moudjahed, M., Dermeche, L., Benadji, S., Mazari, T., Rabia, C. (2016). Dawson-type polyoxometalates as green catalysts for adipic acidsynthesis. J. Mol. Catal. A: Chem., 414: 72-77
  22. Tsigdinos, G.A. (1974). Preparation and Characterization of 12-Molybdophosphoric and 12-Molybdosilicic Acids and Their Metal Salts. Ind. Eng. Chem. Prod. Res. Dev., 13: 267-274
  23. Mizuno, N., Tateishi, M., Iwamoto, M. (1994). Enhancement of catalytic activity of Cs2.5Ni0.08H0.34PMo12O40 by V5+-substitution for oxidation of isobutane into m
  24. ethacrylic. Appl. Catal. A: Gen., 118: L1-L4.
  25. Rocchiccioli-Deltcheff, C., Fournier, M., Frank, R., Thouvenot, R. (1983). Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure. Inorg. Chem., 22: 207-216
  26. Cavani, F., Mezzogori, R., Pigamo, A., Trifirò, F., Etienne, E. (2001). Main aspects of the selective oxidation of isobutane to methacrylic acid catalyzed by Keggin-type polyoxometalates. Catal. Today, 71: 97-110
  27. Clerici, MG., Anfossi, B., Bellussi, G. (1991) Process for oxidating paraffinic compounds. European Patent 0 412 596 A1.
  28. Mimoun, H., Saussine, L., Daire, E., Robine, A., Guibourd de Luzinais, J. (1984). Peroxidic complexes of vanadium, niobium and tantalum, used as reactants and as catalysts for olefins epoxidation and hydrocarbons hydroxylation. European Patent 0 097 551 A1.
  29. Ingle, R.H., Kala, N.K., Manikandan, P. (2007). [SbW9O33]-based polyoxometalate combined with a phase transfer catalyst: A highly effective catalyst system for selective oxidation of alcohols with H2O2, and spectroscopic investigation. J. Mol. Catal. A, 262: 52-58.
  30. Wu, Y., Qu, S., Ma, H., Ye, S. (1994). Catalytic behaviour of metal ions located at different sites of heteropolycompounds. Catal. Lett., 23: 195-205.