skip to main content

Subcritical Water Process for Reducing Sugar Production from Biomass: Optimization and Kinetics

1Department of Chemical Engineering, Faculty of Engineering, Universitas Jember, Jalan Kalimantan 37, Jember 68121, Indonesia

2Department of Chemical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

3Department of Engineering Physics, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

4 Department of Chemical Engineering, Universitas Internasional Semen Indonesia, Gresik 61122, Indonesia

View all affiliations
Received: 23 Nov 2022; Revised: 18 Dec 2022; Accepted: 19 Dec 2022; Available online: 21 Dec 2022; Published: 30 Dec 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Graphical Abstract

The competitive reactions of lignocellulose hydrolysis and monosaccharide degradation in the subcritical water (SCW) hydrolysis of coconut husk were investigated to optimize the reducing sugar yield. Optimization analysis was performed by response surface methodology (RSM) and kinetics studies. Parameters of process optimization were varied at 130-170 °C for 15-45 min. The reducing sugars were measured using the Dinitro salicylic acid method. The sugar yield increased when the temperature increased from 130 °C to 170 °C. The highest reduction sugar yield of 4.946 g/L was obtained at 183.6 °C for 4.8 min and 23.4 liquid/solid ratio (LSR). Kinetics studies were carried out at temperature variations of 150, 170, and 190 °C and pressures of 60, 80, and 100 bar for 5 to 60 min. The yield of reducing sugar decreased with increasing temperature. The kinetic model 2B is the best method to explain the competitive reaction kinetics of coconut husk hydrolysis. This research is an innovation to increase the reducing sugar to make the process more commercially viable. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Coconut Husk; Kinetic Model; Response Surface Methodology; Subcritical water
Funding: Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia; Universitas Jember

Article Metrics:

  1. Nanda, S., Berruti, F. (2021). Municipal solid waste management and landfilling technologies: a review. Environmental Chemistry Letters, 19(2), 1433–1456. DOI: 10.1007/s10311-020-01100-y
  2. Sharma, H.K., Xu, C., Qin, W. (2019). Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste and Biomass Valorization, 10(2), 235–251. DOI: 10.1007/s12649-017-0059-y
  3. Sarker, T.R., Pattnaik, F., Nanda, S., Dalai, A.K., Meda, V., Naik, S. (2021). Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere, 284, 131372. DOI: 10.1016/j.chemosphere.2021.131372
  4. Djali, M., Kayaputri, I.L., Kurniati, D., Sukarminah, E., Mudjenan, I.M.H., Utama, G.L. (2021). Degradation of Lignocelluloses Cocoa Shell (Theobroma cacao L.) by Various Types of Mould Treatments. Journal of Food Quality, 2021, 6127029. DOI: 10.1155/2021/6127029
  5. Rahardjo, A.H., Azmi, R.M., Muharja, M., Aparamarta, H.W., Widjaja, A. (2021). Pretreatment of Tropical Lignocellulosic Biomass for Industrial Biofuel Production : A Review Pretreatment of Tropical Lignocellulosic Biomass for Industrial Biofuel Production : A Review. IOP Conf Series: Materials Science and Engineering, 1053, 012097. DOI: 10.1088/1757-899X/1053/1/012097
  6. Bardhan, P., Deka, A., Bhattacharya, S.S., Mandal, M., Kataki, R. (2022). Economical aspect in biomass to biofuel production. In: Value-Chain of Biofuels. Elsevier, pp. 395–427. DOI: 10.1016/B978-0-12-824388-6.00003-8
  7. Shehu, M.R. (2022). The Production of Bio-Aviation Fuel Precursor (Isoprenol) from Engineered E. coli Using Different Feedstocks. Thesis, Southern Illinois University Edwardsville
  8. Muharja, M., Darmayanti, R.F., Palupi, B., Rahmawati, I., Fachri, B.A., Setiawan, F.A., Amini, H.W., Rizkiana, M.F., Rahmawati, A., Susanti, A., Putri, D.K.Y. (2021). Optimization of microwave-assisted alkali pretreatment for enhancement of delignification process of cocoa pod husk. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 31–43. DOI: 10.9767/bcrec.16.1.8872.31-43
  9. Muharja, M., Fadilah, S.N., Arimbawa, I.M., Hasanah, S., Darmayanti, R.F., Rois, M.F., Asrofi, M. (2022). Low-cost, sustainable, and high-capacity magnetite–cellulose adsorbent from Ramie stem (Boehmeria nivea L.) as oil spill solution. Chemical Papers, 76, 7429–7440. DOI: 10.1007/s11696-022-02423-6
  10. Malolan, R., Panchamoorthy, K., Dai, G., Vo, V.N., Sai, R. (2021). Green ionic liquids and deep eutectic solvents for desulphurization, denitrification, biomass, biodiesel, bioethanol and hydrogen fuels : a review. Environmental Chemistry Letters, 19(2), 1001–1023. DOI: 10.1007/s10311-020-01113-7
  11. Darmayanti, R.F., Susanti, A., Setiawan, F.A., Rizkiana, M.F., Muharja, M., Aji, B.B., Prasiefa, M.G., Dewi, L.T., Yanti, Z.A. (2021). Exploring Starch Sources for the Refreshment Process of Acetone-Butanol-Ethanol Fermentation with Clostridium Saccharoperbutylacetonicum N1-4. International Journal of Technology, 12(2), 309–319. DOI: 10.14716/ijtech.v12i2.4354
  12. Muharja, M., Darmayanti, R.F., Fachri, B.A., Palupi, B., Rahmawati, I., Putri, D.K.Y., Amini, H.W., Setiawan, F.A., Asrofi, M., Widjaja, A., Halim, A. (2022). Biobutanol Production from Cocoa Pod Husk Through a Sequential Green Method: Depectination, Delignification, Enzymatic Hydrolysis, and Extractive Fermentation. Bioresource Technology Reports, 21, 101298. DOI: 10.1016/j.biteb.2022.101298
  13. Zhou, Z., Liu, D., Zhao, X. (2021). Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renewable and Sustainable Energy Reviews, 146, 111169. DOI: 10.1016/j.rser.2021.111169
  14. Hashemi, S.S., Karimi, K., Mirmohamadsadeghi, Safoora (2019). Hydrothermal Pretreatment of Safflower Straw to Enhance Biogas Production. Energy, 172, 545–554. DOI: 10.1016/
  15. Abaide, E.R., Ugalde, G., Di Luccio, M., Moreira, R. de F.P.M., Tres, M. V, Zabot, G.L., Mazutti, M.A. (2019). Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode. Bioresource Technology, 272, 510–520. DOI: 10.1016/j.biortech.2018.10.075
  16. Batista, G., Souza, R.B.A., Pratto, B., dos Santos-Rocha, M.S.R., Cruz, A.J.G. (2019). Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. Bioresource Technology, 275, 321–327. DOI: 10.1016/j.biortech.2018.12.073
  17. Cocero, M.J., Cabeza, Á., Abad, N., Adamovic, T., Vaquerizo, L., Martínez, C.M., Pazo-Cepeda, M.V. (2018). Understanding biomass fractionation in subcritical & supercritical water. Journal of Supercritical Fluids, 133, 550–565. DOI: 10.1016/j.supflu.2017.08.012
  18. Torres-Mayanga, P.C., Azambuja, S.P.H., Tyufekchiev, M., Tompsett, G.A., Timko, M.T., Goldbeck, R., Rostagno, M.A., Forster-Carneiro, T. (2019). Subcritical water hydrolysis of brewer’s spent grains: Selective production of hemicellulosic sugars (C-5 sugars). The
  19. Journal of Supercritical Fluids, 145, 19–30. DOI: 10.1016/j.supflu.2018.11.019
  20. Abaide, E.R., Mortari, S.R., Ugalde, G., Valério, A., Amorim, S.M., Di Luccio, M., Moreira, R. de F.P.M., Kuhn, R.C., Priamo, W.L., Tres, M. V., Zabot, G.L., Mazutti, M.A. (2019). Subcritical water hydrolysis of rice straw in a semi-continuous mode. Journal of Cleaner Production, 209, 386–397. DOI: 10.1016/j.jclepro.2018.10.259
  21. Okolie, J.A., Mukherjee, A., Nanda, S., Dalai, A.K., Kozinski, J.A. (2021). Next-generation biofuels and platform biochemicals from lignocellulosic biomass. International Journal of Energy Research, 45(10), 14145–14169. DOI: 10.1002/er.6697
  22. Muharja, M., Junianti, F., Ranggina, D., Nurtono, T., Widjaja, A. (2018). An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk. Bioresource Technology, 249, 268–275. DOI: 10.1016/j.biortech.2017.10.024
  23. Muharja, M., Umam, D.K., Pertiwi, D., Zuhdan, J., Nurtono, T., Widjaja, A. (2019). Enhancement of sugar production from coconut husk based on the impact of the combination of surfactant-assisted subcritical water and enzymatic hydrolysis. Bioresource Technology, 274, 89–96. DOI: 10.1016/j.biortech.2018.11.074
  24. Muharja, M., Fadhilah, N., Darmayanti, R.F., Sangian, H.F., Nurtono, T., Widjaja, A. (2020). Effect of severity factor on the subcritical water and enzymatic hydrolysis of coconut husk for reducing sugar production. Bulletin of Chemical Reaction Engineering & Catalysis, 15(3), 786–797. DOI: 10.9767/bcrec.15.3.8870.786-797
  25. Yang, W., Wang, H., Zhou, J., Wu, S. (2018). Hydrolysis kinetics and mechanism of chitin in subcritical water. Journal of Supercritical Fluids, 135, 254–262. DOI: 10.1016/j.supflu.2018.01.029
  26. Singh, S., Sawarkar, A.N. (2020). Thermal decomposition aspects and kinetics of pyrolysis of garlic stalk. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–11. DOI: 10.1080/15567036.2020.1716891
  27. Muharja, M., Fadhilah, N., Nurtono, T., Widjaja, A. (2020). Enhancing enzymatic digestibility of coconut husk using nitrogen-assisted subcritical water for sugar production. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 84–95. DOI: 10.9767/bcrec.15.1.5337.84-95
  28. Yu, G., Zhao, J., Wei, Y., Huang, L., Li, F., Zhang, Y., Li, Q. (2021). Physicochemical Properties and Antioxidant Activity of Pumpkin Polysaccharide (Cucurbita moschata Duchesne ex Poiret) Modified by Subcritical Water. Foods, 10(1), 197. DOI: 10.3390/foods10010197
  29. Alper, K., Tekin, K., Karagöz, S., Ragauskas, A.J. (2020). Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. Sustainable Energy & Fuels, 4(9), 4390–4414. DOI: 10.1039/D0SE00784F
  30. Muharja, M., Junianti, F., Nurtono, T., Widjaja, A. (2017). Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk. AIP Conference Proceedings, 1840, 030004. DOI: 10.1063/1.4982264
  31. Rambabu, K., AlYammahi, J., Thanigaivelan, A., Bharath, G., Sivarajasekar, N., Velu, S., Banat, F. (2022). Sub-critical water extraction of reducing sugars and phenolic compounds from date palm fruit. Biomass Convers Biorefinery, in press. DOI: 10.1007/s13399-022-02386-4
  32. Benito-Román, Ó., Alonso-Riaño, P., Díaz de Cerio, E., Sanz, M.T., Beltrán, S. (2022). Semi-continuous hydrolysis of onion skin wastes with subcritical water: Pectin recovery and oligomers identification. Journal of Environmental Chemical Engineering, 10(3), 107439. DOI: 10.1016/j.jece.2022.107439
  33. Zhao, Y., Lu, K., Xu, H., Zhu, L., Wang, S. (2021). A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion. Renewable and Sustainable Energy Reviews, 139, 110706. DOI: 10.1016/j.rser.2021.110706
  34. Cheng Yee, L., Shamsudin, S., Farihan Kasim, K. (2020). Comparative Study of Various Pretreatment on Sugar Production from Mixed Rice Biomass. IOP Conference Series: Materials Science and Engineering, 864(1), 12209. DOI: 10.1088/1757-899X/864/1/012209
  35. Pattnaik, F., Nanda, S., Kumar, V., Naik, S., Dalai, A.K. (2022). Isolation of cellulose fibers from wetland reed grass through an integrated subcritical water hydrolysis-pulping-bleaching process. Fuel, 311, 122618. DOI: 10.1016/j.fuel.2021.122618
  36. Vedovatto, F., Ugalde, G., Bonatto, C., Bazoti, S.F., Treichel, H., Mazutti, M.A., Zabot, G.L., Tres, M.V. (2021). Subcritical water hydrolysis of soybean residues for obtaining fermentable sugars. Journal of Supercritical Fluids, 167, 105043. DOI: 10.1016/j.supflu.2020.105043
  37. Alimny, A.N., Muharja, M., Widjaja, A. (2019). Kinetics of Reducing Sugar Formation from Coconut Husk by Subcritical Water Hydrolysis. Journal of Physics: Conference Series, 1373(1), 012006. DOI: 10.1088/1742-6596/1373/1/012006

Last update:

No citation recorded.

Last update:

No citation recorded.