1Department of Chemical Engineering, Faculty of Engineering, Universitas Jember, Jalan Kalimantan 37, Jember 68121, Indonesia
2Department of Chemical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
3Department of Engineering Physics, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
4 Department of Chemical Engineering, Universitas Internasional Semen Indonesia, Gresik 61122, Indonesia
BibTex Citation Data :
@article{BCREC16527, author = {Maktum Muharja and Arief Widjaja and Rizki Fitria Darmayanti and Nur Fadhilah and Bramantyo Airlangga and Abdul Halim and Siska Nuri Fadilah and I Made Arimbawa}, title = {Subcritical Water Process for Reducing Sugar Production from Biomass: Optimization and Kinetics}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {17}, number = {4}, year = {2022}, keywords = {Coconut Husk; Kinetic Model; Response Surface Methodology; Subcritical water}, abstract = { The competitive reactions of lignocellulose hydrolysis and monosaccharide degradation in the subcritical water (SCW) hydrolysis of coconut husk were investigated to optimize the reducing sugar yield. Optimization analysis was performed by response surface methodology (RSM) and kinetics studies. Parameters of process optimization were varied at 130-170 °C for 15-45 min. The reducing sugars were measured using the Dinitro salicylic acid method. The sugar yield increased when the temperature increased from 130 °C to 170 °C. The highest reduction sugar yield of 4.946 g/L was obtained at 183.6 °C for 4.8 min and 23.4 liquid/solid ratio (LSR). Kinetics studies were carried out at temperature variations of 150, 170, and 190 °C and pressures of 60, 80, and 100 bar for 5 to 60 min. The yield of reducing sugar decreased with increasing temperature. The kinetic model 2B is the best method to explain the competitive reaction kinetics of coconut husk hydrolysis. This research is an innovation to increase the reducing sugar to make the process more commercially viable. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {839--849} doi = {10.9767/bcrec.17.4.16527.839-849}, url = {https://ejournal2.undip.ac.id/index.php/bcrec/article/view/16527} }
Refworks Citation Data :
The competitive reactions of lignocellulose hydrolysis and monosaccharide degradation in the subcritical water (SCW) hydrolysis of coconut husk were investigated to optimize the reducing sugar yield. Optimization analysis was performed by response surface methodology (RSM) and kinetics studies. Parameters of process optimization were varied at 130-170 °C for 15-45 min. The reducing sugars were measured using the Dinitro salicylic acid method. The sugar yield increased when the temperature increased from 130 °C to 170 °C. The highest reduction sugar yield of 4.946 g/L was obtained at 183.6 °C for 4.8 min and 23.4 liquid/solid ratio (LSR). Kinetics studies were carried out at temperature variations of 150, 170, and 190 °C and pressures of 60, 80, and 100 bar for 5 to 60 min. The yield of reducing sugar decreased with increasing temperature. The kinetic model 2B is the best method to explain the competitive reaction kinetics of coconut husk hydrolysis. This research is an innovation to increase the reducing sugar to make the process more commercially viable. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for BCREC Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)