skip to main content

Pillarization of Sumatera Bentonite by Sodium-assisted As Effective Adsorbent of Anionic Surfactants Sodium Lauryl Sulphate (SLS) Waste

1Graduate School, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30139, South Sumatera, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30139, South Sumatera, Indonesia

3Department of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30139, South Sumatera, Indonesia

4 Pharmaceutical Department, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Palembang, 30139, South Sumatera, Indonesia

View all affiliations
Received: 19 Nov 2022; Revised: 2 Feb 2023; Accepted: 3 Feb 2023; Available online: 6 Feb 2023; Published: 30 Mar 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

In this work, the Sumatera bentonite was sodium-pillarized in a new low-temperature and restricted time preparation route and then applied in anionic surfactant sodium lauryl sulphate removal. Structure characterization used Fourier Transform Infra Red (FT-IR), Scanning Electron Microscope - Energy Dispersive X-ray (SEM-EDX), X-ray Diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis. A strong peak at 22° and 35.66° in XRD analysis was detected as Sodium-pillar that increased crystallinity, then the functional changes of dehydration in lattice structure were detected in 1013 cm1 by FTIR analysis. The morphology and compositional transformation were analyzed by SEM-EDX and BET analysis, denoted by increasing particle shape and sodium intercalant composition homogeneity. Moreover, the surface area increased from 61.791 to 66.086 m2/g. The sodium lauryl sulphate adsorption by bentonite-Na reached maximum capacity at 8.403 mg/g, which is higher than the pristine bentonite (5.747 mg/g) under the optimum condition. The adsorption mechanism is feasible, endothermic, and conformed to the pseudo-second-order and Freundlich adsorption model. The new route proposed for sodium intercalation effectively improves the Sumatera bentonite adsorption ability to remove sodium lauryl sulphate waste. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: Pillarization; Sumatera Bentonite; Bentonite-Na; Adsorption; Sodium Lauryl Sulphate.
Funding: Faculty of Mathematics and Natural Sciences, Sriwijaya University

Article Metrics:

  1. Smithers team (2017). The Future of Surfactants to 2022. In: Smithers. Accessed 4 Nov 2022
  2. Aslam, R., Mobin, M., Aslam, J., Aslam, A., Zehra, S., Masroor, S. (2021). Application of surfactants as anticorrosive materials: A comprehensive review. Advances in Colloid and Interface Science, 295, 102481. DOI: 10.1016/j.cis.2021.102481
  3. Asio, J.R.G., Garcia, J.S., Antonatos, C., Sevilla-Nastor, J.B., Trinidad, L.C. (2023). Sodium lauryl sulfate and its potential impacts on organisms and the environment: A thematic analysis. Emerging Contaminants, 9(1), 100205. DOI: 10.1016/j.emcon.2023.100205
  4. Karray, F., Mezghani, M., Mhiri, N., Djelassi, B., Sayadi, S. (2016). Scale-down studies of membrane bioreactor degrading anionic surfactants wastewater: Isolation of new anionic-surfactant degrading bacteria. International Biodeterioration & Biodegradation, 114, 14–23. DOI: 10.1016/j.ibiod.2016.05.020
  5. Yüksel, E., Şengil, İ.A., Özacar, M. (2009). The removal of sodium dodecyl sulfate in synthetic wastewater by peroxi-electrocoagulation method. Chemical Engineering Journal, 152(2–3), 347–353. DOI: 10.1016/j.cej.2009.04.058
  6. Azizullah, A., Khan, S., Rehman, S., Taimur, N., Häder, D.-P. (2021). Detergents Pollution in Freshwater Ecosystems. In: Anthropogenic Pollution of Aquatic Ecosystems. Cham: Springer International Publishing, pp. 245–270. DOI: 10.1007/978-3-030-75602-4_12
  7. Mohammad, A., Ahmad, K., Rajak, R., Mobin, S.M. (2019). Remediation of Water Contaminants. In: Handbook of Ecomaterials. Cham: Springer International Publishing, pp. 373–391. DOI: 10.1007/978-3-319-68255-6_147
  8. Momina, M., Ahmad, K. (2023). Feasibility of the adsorption as a process for its large scale adoption across industries for the treatment of wastewater: Research gaps and economic assessment. Journal of Cleaner Production, 388, 136014. DOI: 10.1016/j.jclepro.2023.136014
  9. Borah, D., Nath, H., Saikia, H. (2022). Modification of bentonite clay & its applications: a review. Reviews in Inorganic Chemistry, 42(3), 265–282. DOI: 10.1515/revic-2021-0030
  10. Ma, J., Qi, J., Yao, C., Cui, B., Zhang, T., Li, D. (2012). A novel bentonite-based adsorbent for anionic pollutant removal from water. Chemical Engineering Journal, 200–202, 97–103. DOI: 10.1016/j.cej.2012.06.014
  11. Cherian, C., Arnepalli, D.N. (2015). A Critical Appraisal of the Role of Clay Mineralogy in Lime Stabilization. International Journal of Geosynthetics and Ground Engineering, 1(1), 8. DOI: 10.1007/s40891-015-0009-3
  12. Shattar, S.F.A., Zakaria, N.A., Foo, K.Y. (2017). Utilization of montmorillonite as a refining solution for the treatment of ametryn, a second generation of pesticide. Journal of Environmental Chemical Engineering, 5(4), 3235–3242. DOI: 10.1016/j.jece.2017.06.031
  13. Kaufhold, S., Dohrmann, R. (2009). Stability of bentonites in salt solutions | sodium chloride. Applied Clay Science, 45(3), 171–177. DOI: 10.1016/j.clay.2009.04.011
  14. Laipan, M., Xiang, L., Yu, J., Martin, B.R., Zhu, R., Zhu, J., He, H., Clearfield, A., Sun, L. (2020). Layered intercalation compounds: Mechanisms, new methodologies, and advanced applications. Progress in Materials Science, 109, 1–97. DOI: 10.1016/j.pmatsci.2019.100631
  15. Wyrwas, B., Zgoła-Grześkowiak, A. (2014). Continuous Flow Methylene Blue Active Substances Method for the Determination of Anionic Surfactants in River Water and Biodegradation Test Samples. Journal of Surfactants and Detergents, 17(1), 191–198. DOI: 10.1007/s11743-013-1469-x
  16. Kruszelnicka, I., Ginter-Kramarczyk, D., Wyrwas, B., Idkowiak, J. (2019). Evaluation of surfactant removal efficiency in selected domestic wastewater treatment plants in Poland. Journal of Environmental Health Science and Engineering, 17(2), 1257–1264. DOI: 10.1007/s40201-019-00387-6
  17. Wu, Z., Deng, W., Tang, S., Ruiz-Hitzky, E., Luo, J., Wang, X. (2021). Pod-inspired MXene/porous carbon microspheres with ultrahigh adsorption capacity towards crystal violet. Chemical Engineering Journal, 426, 130776. DOI: 10.1016/j.cej.2021.130776
  18. Huang, Z., Li, Y., Chen, W., Shi, J., Zhang, N., Wang, X., Li, Z., Gao, L., Zhang, Y. (2017). Modified bentonite adsorption of organic pollutants of dye wastewater. Materials Chemistry and Physics, 202, 266–276. DOI: 10.1016/j.matchemphys.2017.09.028
  19. Sahnoun, S., Boutahala, M., Tiar, C., Kahoul, A. (2018). Adsorption of tartrazine from an aqueous solution by octadecyltrimethylammonium bromide-modified bentonite: Kinetics and isotherm modeling. Comptes Rendus Chimie, 21(3–4), 391–398. DOI: 10.1016/j.crci.2018.01.008
  20. Ranjani, G.I.S., Ramamurthy, K. (2010). Analysis of the Foam Generated Using Surfactant Sodium Lauryl Sulfate. International Journal of Concrete Structures and Materials, 4(1), 55–62. DOI: 10.4334/IJCSM.2010.4.1.055
  21. Handayangi, L. (2020). Pengaruh Kandungan Deterjen Pada Limbah Rumah Tangga Terhadap Kelangsungan Hidup Udang Galah (Macrobracium Rosenbergh). Sebatik, 24(1), 75-80
  22. Belladona, M. (2017). Analisis Tingkat Pencemaran Sungai Akibat Limbah Industri Karet di Kabupaten Bengkulu Tengah. In: Prosiding Seminar Nasional Sains dan Teknologi Fakultas Teknik Universitas Muhammadiyah Jakarta 2017. Jakarta
  23. Yang, D., Cheng, F., Chang, L., Wu, D. (2022). Sodium Modification of Low Quality Natural Bentonite as Enhanced Lead Ion Adsorbent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 651, 129753. DOI: 10.1016/j.colsurfa.2022.129753
  24. Sirait, M., Bukit, N., Siregar, N. (2017). Preparation and characterization of natural bentonite in to nanoparticles by co-precipitation method. AIP Conference Proceedings, 1801, 020006. DOI: 10.1063/1.4973084
  25. Tabak, A., Afsin, B., Caglar, B., Koksal, E. (2007). Characterization and pillaring of a Turkish bentonite (Resadiye). Journal of Colloid and Interface Science, 313(1), 5–11. DOI: 10.1016/j.jcis.2007.02.086
  26. Ajemba, R.O. (2014). Structural Alteration of Bentonite From Nkaliki by Acid Treatment: Studies of The Kinetics and Properties of The Modified Samples. International Journal of Advances in Engineering & Technology, 7(2), 379-392. DOI: 10.7323/ijaet/v7_iss2
  27. Madejová, J.., Kečkéš, J.., Pálková, H., Komadel, P.. (2002). Identification of components in smectite/kaolinite mixtures. Clay Minerals, 37(2), 377–388. DOI: 10.1180/0009855023720042
  28. Al-Essa, K., Al-Essa, E.M. (2021). Effective Approach of Activated Jordanian Bentonite by Sodium Ions for Total Phenolic Compounds Removal from Olive Mill Wastewater. Journal of Chemistry, 2021, 7405238. DOI: 10.1155/2021/7405238
  29. Mekhamer, W.K. (2016). Energy storage through adsorption and desorption of water vapour in raw Saudi bentonite. Arabian Journal of Chemistry, 9, S264–S268. DOI: 10.1016/j.arabjc.2011.03.021
  30. Karelius, K., Sadiana, I.M., Fatah, A.H., Agnestisia, R. (2022). Co-Precipitation Synthesis of Clay-Magnetite Nanocomposite for Adsorptive Removal of Synthetic Dye in Wastewater of Benang Bintik Batik. Molekul, 17(2), 261. DOI: 10.20884/
  31. Batdemberel, G., Battumur, T., Enkhtuya, T., Tsermaa, G., Chadraabal, S. (2015). Synthesis of ZnO Nanoparticles by Mechanochemical Processing. In: Proceedings of the 4th International Conference on X-ray Analysis. Mongolia
  32. Mu’azu, N.D., Jarrah, N., Kazeem, T.S., Zubair, M., Al-Harthi, M. (2018). Bentonite-layered double hydroxide composite for enhanced aqueous adsorption of Eriochrome Black T. Applied Clay Science, 161, 23–34. DOI: 10.1016/j.clay.2018.04.009
  33. Tong, D.S., Wu, C.W., Adebajo, M.O., Jin, G.C., Yu, W.H., Ji, S.F., Zhou, C.H. (2018). Adsorption of methylene blue from aqueous solution onto porous cellulose-derived carbon/montmorillonite nanocomposites. Applied Clay Science, 161, 256–264. DOI: 10.1016/j.clay.2018.02.017
  34. Hakim, Y., Mohadi, R., Mardiyanto, M., Royani, I. (2023). Ammonium-Assisted Intercalation of Java Bentonite as Effective of Cationic Dye Removal. Journal of Ecological Engineering, 24(2), 184–195. DOI: 10.12911/22998993/156665
  35. Sing, K.S.W., Williams, R.T. (2005). Empirical Procedures for the Analysis of Physisorption Isotherms. Adsorption Science & Technology, 23(10), 839–853. DOI: 10.1260/026361705777641990
  36. Mohadi, R., Normah, N., Fitri, E.S., Palapa, N.R. (2022). Unique Adsorption Properties of Cationic Dyes Malachite Green and Rhodamine-B on Longan (Dimocarpus longan) Peel. Science and Technology Indonesia, 7(1), 115–125. DOI: 10.26554/sti.2022.7.1.115-125
  37. Messaoudi, M., Douma, M., Tijani, N., Dehmani, Y., Messaoudi, L. (2021). Adsorption process of the malachite green onto clay: kinetic and thermodynamic studies. Desalination and Water Treatment, 240, 191–202. DOI: 10.5004/dwt.2021.27688
  38. Kalam, S., Abu-Khamsin, S.A., Kamal, M.S., Patil, S. (2021). Surfactant Adsorption Isotherms: A Review. ACS Omega, 6(48), 32342–32348. DOI: 10.1021/acsomega.1c04661
  39. Elmorsi, T.M. (2011). Equilibrium Isotherms and Kinetic Studies of Removal of Methylene Blue Dye by Adsorption onto Miswak Leaves as a Natural Adsorbent. Journal of Environmental Protection, 02(06), 817–827. DOI: 10.4236/jep.2011.26093
  40. Langmuir, I. (1916). The Constitution and Fundamental Properties of Solids and Liquids. Journal of the American Chemical Society, 38(11), 2221–2295. DOI: 10.1021/ja02268a002
  41. Foo, K.Y., Hameed, B.H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. DOI: 10.1016/j.cej.2009.09.013
  42. Zhu, S., Wang, D. (2017). Photocatalysis: Basic Principles, Diverse Forms of Implementations and Emerging Scientific Opportunities. Advanced Energy Materials, 7(23), 1700841. DOI: 10.1002/aenm.201700841
  43. Zhang, F., Li, S., Zhang, Q., Liu, J., Zeng, S., Liu, M., Sun, D. (2019). Adsorption of different types of surfactants on graphene oxide. Journal of Molecular Liquids, 276, 338–346. DOI: 10.1016/j.molliq.2018.12.009
  44. Jabar, J.M., Odusote, Y.A., Alabi, K.A., Ahmed, I.B. (2020). Kinetics and mechanisms of congo-red dye removal from aqueous solution using activated Moringa oleifera seed coat as adsorbent. Applied Water Science, 10(6), 136. DOI: 10.1007/s13201-020-01221-3
  45. Malima, N.M., Owonubi, S.J., Lugwisha, E.H., Mwakaboko, A.S. (2021). Thermodynamic, isothermal and kinetic studies of heavy metals adsorption by chemically modified Tanzanian Malangali kaolin clay. International Journal of Environmental Science and Technology, 18(10), 3153–3168. DOI: 10.1007/s13762-020-03078-0
  46. Zhang, Y., Shi, W., Zhou, H., Fu, X., Chen, X. (2010). Kinetic and Thermodynamic Studies on the Adsorption of Anionic Surfactant on Quaternary Ammonium Cationic Cellulose. Water Environment Research, 82(6), 567–573. DOI: 10.2175/106143009X12529484816079
  47. Zhang, P., Liu, Y., Li, Z., Kan, A.T., Tomson, M.B. (2018). Sorption and desorption characteristics of anionic surfactants to soil sediments. Chemosphere, 211, 1183–1192. DOI: 10.1016/j.chemosphere.2018.08.051
  48. Li, P., Ishiguro, M. (2016). Adsorption of anionic surfactant (sodium dodecyl sulfate) on silica. Soil Science and Plant Nutrition, 62(3), 223–229. DOI: 10.1080/00380768.2016.1191969
  49. Herawati, I., Permadi, P., Rochliadi, A., Marhaendrajana, T. (2022). Adsorption of anionic surfactant on sandstone reservoir containing clay minerals and its effect on wettability alteration. Energy Reports, 8, 11554–11568. DOI: 10.1016/j.egyr.2022.08.268
  50. Abbas, A.H., Pourafshary, P., Wan Sulaiman, W.R., Jaafar, M.Z., Nyakuma, B.B. (2021). Toward Reducing Surfactant Adsorption on Clay Minerals by Lignin for Enhanced Oil Recovery Application. ACS Omega, 6(29), 18651–18662. DOI: 10.1021/acsomega.1c01342

Last update:

No citation recorded.

Last update:

No citation recorded.