skip to main content

Modeling and Simulation of Carbon Dioxide Gas Reactive Desorption Process with Piperazine Promoted Diethanolamine Solvent in Sieve Tray Column

Department of Chemical Engineering, Faculty of Industrial Technology and System Engineering (INDSYS), Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia

Received: 23 Oct 2022; Revised: 23 Nov 2022; Accepted: 24 Nov 2022; Available online: 7 Dec 2022; Published: 30 Dec 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Carbon dioxide (CO2) is an acidic and corrosive gas, and the presence of this gas in the piping system can cause various problems in the industrial sector. Therefore, the CO2 must be separated from the gas stream. One of the CO2 gas separation processes from the gas stream is carried out in a CO2 removal unit, where a desorption unit serves as a solvent regeneration step. Therefore, this study aims to develop a rate-based model and simulation of the reactive desorption process of CO2 gas in a sieve tray column. The rate-based model in the reactive desorption process of CO2 gas is based on film theory, the liquid in the tray is assumed completely agitated due to gas bubbling, the flow pattern of gas is plug flow, and the effect of the reaction on the mass transfer follows the enhancement factor concept. The number of trays used in this study was 20. In addition, the effect of several variables, such as: desorber pressure, rich amine temperature, rich amine flow rate, and reboiler load, was also assessed on the CO2 stripping efficiency. The accuracy of our prediction model is 1.34% compared with industrial plant data. Compared with the chemical engineering simulator simulation results, the average deviation is 4%. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Desorption; Diethanolamine; Rate-based model; Stripper; Tray column
Funding: Indonesia Endowment Funds for Education (LPDP) through the Indonesia-Domestic Lecturer Excellence Scholarship Education Program (BUDI-DN) under contract Grant number: 20200421681167

Article Metrics:

  1. NASA (2022). Carbon Dioxide Concentration. https://climate.nasa.gov/vital-signs/carbon-dioxide. Accessed 31 Aug 2022
  2. Chu, S., Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294–303. DOI: 10.1038/nature11475
  3. Hegerl, G., Stott, P. (2014). From past to future warming. Science, 343(6173), 844–845. DOI: 10.1126/science.1249368
  4. Rutgersson, A., Jaagus, J., Schenk, F., Stendel, M. (2014). Observed changes and variability of atmospheric parameters in the Baltic Sea region during the last 200 years. Climate Research, 61(2), 177–190. DOI: 10.3354/cr01244
  5. Howard-Grenville, J., Buckle, S.J., Hoskins, B.J., George, G. (2014). Climate Change and Management. Academy of Management Journal, 57(3), 615–623. DOI: 10.5465/amj.2014.4003
  6. Mondal, B.K., Bandyopadhyay, S.S., Samanta, A.N. (2015). Vapor-liquid equilibrium measurement and ENRTL modeling of CO2 absorption in aqueous hexamethylenediamine. Fluid Phase Equilibria, 402, 102–112. DOI: 10.1016/j.fluid.2015.05.033
  7. Borhani, T.N.G., Akbari, V., Afkhamipour, M., Hamid, M.K.A., Manan, Z.A. (2015). Comparison of equilibrium and non-equilibrium models of a tray column for post-combustion CO2 capture using DEA-promoted potassium carbonate solution. Chemical Engineering Science, 122, 291–298. DOI: 10.1016/j.ces.2014.09.017
  8. Nisa, N.I.F., Mahfud, M., Altway, A., Nurkhamidah, S., Eduard, W., Bethiana, T.N. (2021). Simulation for Absorption of Acid Gas into Piperazine Promoted Methyl Diethanolamine Solution Using Sieve Tray Column. Journal of Physics: Conference Series, 1845(1) DOI: 10.1088/1742-6596/1845/1/012003
  9. Mahmoodi, L., Darvishi, P. (2017). Mathematical modeling and optimization of carbon dioxide stripping tower in an industrial ammonia plant. International Journal of Greenhouse Gas Control, 58, 42–51. DOI: 10.1016/j.ijggc.2017.01.005
  10. Brickett, L., Munson, R., Litynski, J. (2020). U.S. DOE/NETL large pilot-scale testing of advanced carbon capture technologies. Fuel, 268(January), 117169. DOI: 10.1016/j.fuel.2020.117169
  11. Khoshraftar, Z., Ghaemi, A. (2022). Presence of activated carbon particles from waste walnut shell as a biosorbent in monoethanolamine (MEA) solution to enhance carbon dioxide absorption. Heliyon, 8(1), e08689. DOI: 10.1016/j.heliyon.2021.e08689
  12. Xu, X., Yang, Y., Acencios Falcon, L.P., Hazewinkel, P., Wood, C.D. (2019). Carbon capture by DEA-infused hydrogels. International Journal of Greenhouse Gas Control, 88(June), 226–232. DOI: 10.1016/j.ijggc.2019.06.005
  13. Aghel, B., Sahraie, S., Heidaryan, E., Varmira, K. (2019). Experimental study of carbon dioxide absorption by mixed aqueous solutions of methyl diethanolamine (MDEA) and piperazine (PZ) in a microreactor. Process Safety and Environmental Protection, 131, 152–159. DOI: 10.1016/j.psep.2019.09.008
  14. Kohl, A.L., Nielsen, R.B. (1997). Gas Purification. Gulf Publishing Company
  15. Niknam, H., Jahangiri, A., Alishvandi, N. (2019). Removal of CO2 from gas mixture by aqueous blends of monoethanolamine + piperazine and thermodynamic analysis using the improved kent eisenberg model. Journal of Environmental Treatment Techniques, 7(1), 158–165
  16. Borhani, Babamohammadi, S., Khallaghi, N., Zhang, Z. (2022). Mixture of piperazine and potassium carbonate to absorb CO2 in the packed column: Modelling study. Fuel, 308(April 2021), 122033. DOI: 10.1016/j.fuel.2021.122033
  17. Kale, C., Tönnies, I., Hasse, H., Górak, A. (2011). Simulation of Reactive Absorption: Model Validation for CO2-MEA system. Computer Aided Chemical Engineering, 29, 61–65. DOI: 10.1016/B978-0-444-53711-9.50013-4
  18. Qi, G., Wang, S., Yu, H., Feron, P., Chen, C. (2013). Rate-based modeling of CO2 absorption in aqueous NH3 in a packed column. Energy Procedia, 37(x), 1968–1976. DOI: 10.1016/j.egypro.2013.06.077
  19. Rafagnim, N.Z., Barbieri, M.R., Noriler, D., Meier, H.F., Silva, M.K. da (2021). Euler–Euler model for CO2-MEA reactive absorption on a sieve-tray. Chemical Engineering Research and Design, 170, 201–212. DOI: 10.1016/j.cherd.2021.03.033
  20. Salem, A., Amanpour Reyhani, F. (2015). Applied aspects for enhanced CO2 capture from reformer gas: Comparison between the performance of valve tray absorber and packed column, Part I. International Journal of Greenhouse Gas Control, 42, 237–245. DOI: 10.1016/j.ijggc.2015.07.028
  21. Shahid, M.Z., Maulud, A.S., Bustam, M.A., Suleman, H., Abdul Halim, H.N., Shariff, A.M. (2021). Packed column modelling and experimental evaluation for CO2 absorption using MDEA solution at high pressure and high CO2 concentrations. Journal of Natural Gas Science and Engineering, 88(January), 103829. DOI: 10.1016/j.jngse.2021.103829
  22. Oyenekan, B.A., Rochelle, G.T. (2009). Rate modeling of CO2 stripping from potassium carbonate promoted by piperazine. International Journal of Greenhouse Gas Control, 3(2), 121–132. DOI: 10.1016/j.ijggc.2008.06.010
  23. Nisa, N.I.F., Altway, A., Susianto, S. (2019). Simulasi Unit Stripping CO2 Dalam Packed Column Skala Industri Dengan Kondisi Non-(Isothermal Simulation of Industrial Scale Column CO2 Stripping Units With Non-Isothermal Conditions). Jurnal Rekayasa Kimia & Lingkungan, 14(1), 53–62, DOI: 10.23955/rkl.v14i1.13547
  24. Park, H.M. (2014). A multiscale modeling of carbon dioxide absorber and stripper using the Karhunen-Loève Galerkin method. International Journal of Heat and Mass Transfer, 75, 545–564. DOI: 10.1016/j.ijheatmasstransfer.2014.03.089
  25. Oyenekan, B.A., Rochelle, G.T. (2006). Energy performance of stripper configurations for CO 2 capture by aqueous amines. Industrial and Engineering Chemistry Research, 45(8), 2457–2464. DOI: 10.1021/ie050548k
  26. Alie, C., Backham, L., Croiset, E., Douglas, P.L. (2005). Simulation of CO2 capture using MEA scrubbing: A flowsheet decomposition method. Energy Conversion and Management, 46(3), 475–487. DOI: 10.1016/j.enconman.2004.03.003
  27. Jassim, M.S., Rochelle, G.T. (2006). Innovative absorber/stripper configurations for CO 2 capture by aqueous monoethanolamine. Industrial and Engineering Chemistry Research, 45(8), 2465–2472. DOI: 10.1021/ie050547s
  28. Tobiesen, F.A., Svendsen, H.F., Hoff, K.A. (2005). Desorber Energy Consumption Amine Based Absorption Plants. International Journal of Green Energy, 2(2), 201–215. DOI: 10.1081/ge-200058981
  29. Tobiesen, F.A., Svendsen, H.F. (2006). Study of a modified amine-based regeneration unit. Industrial and Engineering Chemistry Research, 45(8), 2489–2496. DOI: 10.1021/ie050544f
  30. Weiland, R.H., Rawal, M., Rice, R.G. (1982). Stripping of carbon dioxide from monoethanolamine solutions in a packed column. AIChE Journal, 28(6), 963–973. DOI: 10.1002/aic.690280611
  31. Borhani, T.N.G., Oko, E., Wang, M. (2019). Process modelling, validation and analysis of rotating packed bed stripper in the context of intensified CO2 capture with MEA. Journal of Industrial and Engineering Chemistry, 75, 285–295. DOI: 10.1016/j.jiec.2019.03.040
  32. Lin, Y.J., Rochelle, G.T. (2014). Optimization of advanced flash stripper for CO2 capture using piperazine. Energy Procedia, 63, 1504–1513. DOI: 10.1016/j.egypro.2014.11.160
  33. Moioli, S., Pellegrini, L.A. (2013). Regeneration section of CO2 capture plant by MEA scrubbing with a rate-based model. Chemical Engineering Transactions, 32, 1849–1854. DOI: 10.3303/CET1332309
  34. Ariani, A., Chalim, A., Hardjono, H. (2021). Modeling and simulation of CO2 gas desorption process in promoted MDEA solution using packed column. IOP Conference Series: Materials Science and Engineering, 1073(1), 012004. DOI: 10.1088/1757-899x/1073/1/012004
  35. Rahimpour, M.R., Darvishi, P. (2007). Desorption Of Carbon Dioxide From Promoted Hot Potassium Carbonate In An Industrial Stripper Using Penetration Theory. Chemical Technology An Indian Journal, 2(1), 13–23
  36. Garcia, M., Knuutila, H.K., Gu, S. (2017). ASPEN PLUS simulation model for CO2 removal with MEA: Validation of desorption model with experimental data. Journal of Environmental Chemical Engineering, 5(5), 4693–4701. DOI: 10.1016/j.jece.2017.08.024
  37. Yi, F., Zou, H.K., Chu, G.W., Shao, L., Chen, J.F. (2009). Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed. Chemical Engineering Journal, 145(3), 377–384. DOI: 10.1016/j.cej.2008.08.004
  38. Khan, A.A., Halder, G., Saha, A.K. (2019). Kinetic effect and absorption performance of piperazine activator into aqueous solutions of 2-amino-2-methyl-1-propanol through post-combustion CO2 capture. Korean Journal of Chemical Engineering, 36(7), 1090–1101. DOI: 10.1007/s11814-019-0296-9
  39. Pudjiastuti, L., Susianto, Altway, A., Ic, M.H., Arsi, K. (2015). Kinetic study of carbon dioxide absorption into glycine promoted diethanolamine (DEA). AIP Conference Proceedings, 1699, 060011. DOI: 10.1063/1.4938365
  40. Dash, S.K., Samanta, A., Nath Samanta, A., Bandyopadhyay, S.S. (2011). Absorption of carbon dioxide in piperazine activated concentrated aqueous 2-amino-2-methyl-1-propanol solvent. Chemical Engineering Science, 66(14), 3223–3233. DOI: 10.1016/j.ces.2011.02.028
  41. Chakma, A., Meisen, A. (1990). Improved Kent-Eisenberg model for predicting CO2 solubilities in aqueous diethanolamine (DEA) solutions. Gas Separation and Purification, 4(1), 37–40. DOI: 10.1016/0950-4214(90)80025-G
  42. Altway, A., Susianto, S., Suprapto, S., Nurkhamidah, S., Nisa, N.I.F., Hardiyanto, F., Mulya, H.R., Altway, S. (2015). Modeling and simulation of CO2 absorption into promoted aqueous potassium carbonate solution in industrial scale packed column. Bulletin of Chemical Reaction Engineering & Catalysis, 10(2), 111–124. DOI: 10.9767/bcrec.10.2.7063.111-124
  43. Danckwerts, P.V. (1970). Gas Liquid Reactions. McGraw-Hill Book Company
  44. Sander, R. (2015). Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 15(8), 4399–4981. DOI: 10.5194/acp-15-4399-2015
  45. Weisenberger, S., Schumpe, A. (1996). Estimation of Gas Solubilities in Salt Solutions at Temperatures from 273 K to 363 K. AIChE Journal, 42(1), 298–300. DOI: 10.1002/aic.690420130

Last update:

No citation recorded.

Last update:

No citation recorded.