Department of Chemical Engineering, Faculty of Industrial Technology and System Engineering (INDSYS), Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
BibTex Citation Data :
@article{BCREC16245, author = {Nur Ihda Farikhatin Nisa and Nabila Farras Balqis and Muhammad Anshorulloh Mukhlish and Ali Altway and Mahfud Mahfud}, title = {Modeling and Simulation of Carbon Dioxide Gas Reactive Desorption Process with Piperazine Promoted Diethanolamine Solvent in Sieve Tray Column}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {17}, number = {4}, year = {2022}, keywords = {Desorption; Diethanolamine; Rate-based model; Stripper; Tray column}, abstract = { Carbon dioxide (CO 2 ) is an acidic and corrosive gas, and the presence of this gas in the piping system can cause various problems in the industrial sector. Therefore, the CO 2 must be separated from the gas stream. One of the CO 2 gas separation processes from the gas stream is carried out in a CO 2 removal unit, where a desorption unit serves as a solvent regeneration step. Therefore, this study aims to develop a rate-based model and simulation of the reactive desorption process of CO 2 gas in a sieve tray column. The rate-based model in the reactive desorption process of CO 2 gas is based on film theory, the liquid in the tray is assumed completely agitated due to gas bubbling, the flow pattern of gas is plug flow, and the effect of the reaction on the mass transfer follows the enhancement factor concept. The number of trays used in this study was 20. In addition, the effect of several variables, such as: desorber pressure, rich amine temperature, rich amine flow rate, and reboiler load, was also assessed on the CO 2 stripping efficiency. The accuracy of our prediction model is 1.34% compared with industrial plant data. Compared with the chemical engineering simulator simulation results, the average deviation is 4%. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License ( https://creativecommons.org/licenses/by-sa/4.0 ). }, issn = {1978-2993}, pages = {798--810} doi = {10.9767/bcrec.17.4.16245.798-810}, url = {https://ejournal2.undip.ac.id/index.php/bcrec/article/view/16245} }
Refworks Citation Data :
Carbon dioxide (CO2) is an acidic and corrosive gas, and the presence of this gas in the piping system can cause various problems in the industrial sector. Therefore, the CO2 must be separated from the gas stream. One of the CO2 gas separation processes from the gas stream is carried out in a CO2 removal unit, where a desorption unit serves as a solvent regeneration step. Therefore, this study aims to develop a rate-based model and simulation of the reactive desorption process of CO2 gas in a sieve tray column. The rate-based model in the reactive desorption process of CO2 gas is based on film theory, the liquid in the tray is assumed completely agitated due to gas bubbling, the flow pattern of gas is plug flow, and the effect of the reaction on the mass transfer follows the enhancement factor concept. The number of trays used in this study was 20. In addition, the effect of several variables, such as: desorber pressure, rich amine temperature, rich amine flow rate, and reboiler load, was also assessed on the CO2 stripping efficiency. The accuracy of our prediction model is 1.34% compared with industrial plant data. Compared with the chemical engineering simulator simulation results, the average deviation is 4%. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Article Metrics:
Last update:
In order for BCREC Group to publish and disseminate research articles, we need non-exclusive publishing rights (transfered from author(s) to publisher). This is determined by a publishing agreement between the Author(s) and BCREC Group. This agreement deals with the transfer or license of the copyright of publishing to BCREC Group, while Authors still retain significant rights to use and share their own published articles. BCREC Group supports the need for authors to share, disseminate and maximize the impact of their research and these rights, in any databases.
As a journal Author, you have rights for a large range of uses of your article, including use by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any) and retain an indication of previous modifications using a CrossMark Policy and information about Erratum-Corrigendum notification).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
The Authors submitting a manuscript do so on the understanding that if accepted for publication, non-exclusive right for publishing (publishing right) of the article shall be assigned/transferred to Publisher of Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS) (or BCREC Group).
Upon acceptance of an article, authors will be asked to complete a 'Copyright Transfer Agreement for Publishing (CTAP)'. An e-mail will be sent to the Corresponding Author confirming receipt of the manuscript together with a 'Copyright Transfer Agreement for Publishing' form by online version of this agreement.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University/Masyarakat Katalis Indonesia-Indonesian Catalyst Society (MKICS), the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis are sole and exclusive responsibility of their respective authors and advertisers.
Remember, even though we ask for a transfer of copyright for publishing (CTAP), our journal Author(s) retain (or are granted back) significant scholarly rights as mentioned before.
The Copyright Transfer Agreement for Publishing (CTAP) Form can be downloaded here: [Copyright Transfer Agreement for Publishing (CTAP) Form BCREC 2020]
The copyright form should be signed electronically and send to the Editorial Office in the form of original e-mail below: Prof. Dr. I. Istadi (Editor-in-Chief)Editorial Office of Bulletin of Chemical Reaction Engineering & CatalysisLaboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas DiponegoroJl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275Telp/Whatsapp: +62-81-316426342E-mail: bcrec[at]live.undip.ac.id
(This policy statements has been updated at 24th December 2020)