skip to main content

Synthesis of Mesoporous Silica Incorporated with Low Iron Concentration and Gelatin Co-Template via The Ultrasonication Method and Its Methylene Blue Photodegradation Performance

Chemistry Education Study Program, Faculty of Teacher Training and Education, Sebelas Maret University, Surakarta 57126, Central Java, Indonesia

Received: 19 Oct 2022; Revised: 18 Nov 2022; Accepted: 28 Nov 2022; Available online: 6 Dec 2022; Published: 30 Dec 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

In this work, low iron concentration incorporated on mesoporous silica with gelatin co-template (Fe2O3/GSBA-15) has been successfully synthesized via the ultrasonication method. The physical, chemical, and structural properties of the samples were investigated with X-Ray Diffraction (XRD), Scanning Electron Microscope- Energy Dispersive X-Ray (SEM-EDX), Fourier Transform Infra-Red (FTIR), and N2 adsorption-desorption. Results showed good distribution of low concentration of iron oxide on the gelatin mesoporous silica GSBA-15. Elemental and surface analysis presented that iron oxide incorporation with higher concentration exhibited lower surface area due to the blocking pore. The highest photocatalytic activity on the methylene blue dye degradation was achieved at 10% Fe2O3/GSBA-15 with ~80% efficiency. The results revealed that the photocatalytic activity of Fe2O3/GSBA-15 enhanced with the presence of iron oxide. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Mesoporous silica; iron oxide; gelatin; incorporation; ultrasonication; photocatalyst; methylene blue; photodegradation
Funding: Ministry of Education, Culture, Research, and Technology, Indonesia under contract Fundamental Research scheme (PDUPT)No. 469.1/UN27.22/PT01.03/2022

Article Metrics:

  1. Dutt, M.A., Hanif, M.A., Nadeem, F., Bhatti, H.N. (2020). A review of advances in engineered composite materials popular for wastewater treatment. J. Environ. Chem. Eng. 8(5), 104073. doi: 10.1016/j.jece.2020.104073
  2. Wu, L., Yu, J.C., Zhang, L., Wang, X., Li, S. (2004). Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. J. Solid State Chem. 177(10), 3666–3674. doi: 10.1016/j.jssc.2004.06.020
  3. Dotto, G.L., Santos, J.M.N., Rodrigues, I.L., Rosa, R., Pavan, F.A., Lima, E.C. (2015). Adsorption of Methylene Blue by ultrasonic surface modified chitin. J. Colloid Interface Sci. 446, 133–140. doi: 10.1016/j.jcis.2015.01.046
  4. Brossault, D.F.F., McCoy, T.M., Routh, A.F. (2021). Self-assembly of TiO2/Fe3O4/SiO2 microbeads: A green approach to produce magnetic photocatalysts. J. Colloid Interface Sci. 584, 779–788. doi: 10.1016/j.jcis.2020.10.001
  5. Iqbal, M., Saeed, A., Zafar, S.I. (2009).. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J. Hazard. Mater. 164(1), 161–171. doi: 10.1016/j.jhazmat.2008.07.141
  6. Ulfa, M., Al Afif, H., Saraswati, T.E., Bahruji, H. (2022). Fast Removal of Methylene Blue via Adsorption-Photodegradation on TiO2/SBA-15 Synthesized by Slow Calcination. Materials (Basel). 15(5471), 1–13
  7. Ulfa, M., Prasetyoko, D., Bahruji, H., Nugraha, R.E. (2021). Green Synthesis of Hexagonal Hematite (α-Fe2O3) Flakes Using Pluronic F127-Gelatin Template for Adsorption and Photodegradation of Ibuprofen. Materials (Basel). 14 (6779), 1–18. DOI: 10.3390/ma14226779
  8. Sugrañez, R., Balbuena, J., Cruz-Yusta, M., Martín, F., Morales, J., Sánchez, L. (2015). Efficient behavior of hematite towards the photocatalytic degradation of NOx gases. App. Catal. B Environ. 165(X), 529–536. doi: 10.1016/j.apcatb.2014.10.025
  9. Wu, X., Xie, X., Cao, Y. (2016). Self-magnetization of pyrite and its application in flotation. Trans. Nonferrous Met. Soc. China. 26(12), 3238–3244. doi: 10.1016/S1003-6326(16)64456-4
  10. Wang, K., Chen, H., Zhang, X., Tong, Y., Song, S., Tsiakaras, P. (2020). Iron oxide@graphitic carbon core-shell nanoparticles embedded in ordered mesoporous N-doped carbon matrix as an efficient cathode catalyst for PEMFC. Appl. Catal. B Environ. 264, 118468. doi: 10.1016/j.apcatb.2019.118468
  11. Si-Hwa, L., Moumita, K., Jung-Hwan, O., Palanichamy, S., Sung-Ho, P., Yun-Sung, L., Il-Kwon, O. (2017). Nanohole-structured, iron oxide-decorated and gelatin-functionalized graphene for high rate and high capacity Li-Ion anodes. Carbon. 119, 355–364. 2017. doi: 10.1016/j.carbon.2017.04.031
  12. An, J., Gou, Y., Yang, C., Hu, F., Wang, C. (2013). Synthesis of a biocompatible gelatin functionalized graphene nanosheets and its application for drug delivery. Mater. Science. Eng. C. 33(5), 2827–2837. doi: 10.1016/j.msec.2013.03.008
  13. Ulfa, M., Trisunaryanti, W., Falah, I.I., Kartini, I. (2018). Wormhole-Like Mesoporous Carbons from Gelatine as Multistep Infiltration Effect. Indones. J. Chem. 16(3), 239-242. doi: 10.22146/ijc.21137
  14. Ulfa, M., Prasetyoko, D., Mahadi, A.H., Bahruji, H. (2020). Size tunable mesoporous carbon microspheres using Pluronic F127 and gelatin as co-template for removal of ibuprofen. Science. Total Environ. 711, 135066. doi: 10.1016/j.scitotenv.2019.135066
  15. Ulfa, M., Saraswati, T.E., Mulyani, B., Prasetyoko, D. (2019). Transformation of Iron Nitrate Into Nano Iron Particles. Journal of Chemical Technology and Metallurgy. 54(4), 709 – 714
  16. Mallakpour, S., Azadi, E. (2020). Chapter 11 – Sonochemical protocol for the organo-synthesis of TiO2 and its hybrids: Properties and applications. Inamuddin, Rajender Boddula, Abdulah M. Asiri (Editors) Green Sustainable Process for Chemical and Environmental Engineering and Science. Amsterdam: Elsevier. doi: 10.1016/b978-0-12-819540-6.00011-5
  17. Gupta, N.K., Bae, J., Kim, S., Kim, K.S. (2021). Fabrication of Zn-MOF/ZnO nanocomposites for room temperature H2S removal: Adsorption, regeneration, and mechanism. Chemosphere. 274, 129789. doi: 10.1016/j.chemosphere.2021.129789
  18. Malika, M., Sonawane, S.S. (2021). Statistical modeling for the Ultrasonic photodegradation of Rhodamine B dye using aqueous based Bi-metal doped TiO2 supported montmorillonite hybrid nanofluid via RSM. Sustain. Energy Technol. Assessments. 44, 100980. doi: 10.1016/j.seta.2020.100980
  19. Kuterasiński, L., Filek, U., Gackowski, M., Zimowska, M., Ruggiero-Mikołajczyka, M., Jodłowski, P.J. (2021). Ultrasonics Sonochemistry Sonochemically prepared hierarchical MFI-type zeolites as active catalysts for catalytic ethanol dehydration. Ultrasonics Sonochemistry. 74, 105581. doi: 10.1016/j.ultsonch.2021.105581
  20. Mallakpour, S., Shamsaddinimotlagh, S. (2018). Ultrasonics - Sonochemistry Ultrasonic-promoted rapid preparation of PVC/TiO2-BSA nanocomposites: Characterization and photocatalytic degradation of methylene blue. Ultrasonic Sonochemistry. 41, 361–374. doi: 10.1016/j.ultsonch.2017.09.052
  21. Zhang, S., Zhang, Y., Li, Z. (2018). Ultrasonic monitoring of setting and hardening of slag blended cement under different curing temperatures by using embedded piezoelectric transducers. Constr. Builds. Mater. 159, 553–560. doi: 10.1016/j.conbuildmat.2017.10.124
  22. Dhivyaprasath, K., Wiston, B.R., Preetham, M., Harinee, S., Ashok, M. (2021). Ultrasonic spray deposition of WO3-rGO thin-film composite for photocatalytic degradation of methylene blue. Optics (Stuttg). 244, 167593. doi: 10.1016/j.ijleo.2021.167593
  23. Ulfa, M., Setiarini, I. (2022). The Effect of Zinc Oxide Supported on Gelatin Mesoporous Silica (GSBA-15) on Structural Character and Their Methylene Blue Photodegradation Performance. Bulls. Chem. React. Eng. Catal. 17(2), 363–374. doi: 10.9767/bcrec.17.2.13712.363-374
  24. Lu C., Zhang S., Wang J., Zhao X., Zhang L., Tang A. (2022). Efficient activation of peroxymonosulfate by iron-containing mesoporous silica catalysts derived from iron tailings for the degradation of organic pollutants. Chem. Eng. J. 446(P1), 137044. doi: 10.1016/j.cej.2022.37044
  25. Silva, L.A., Borges, S.M.S., Paulino, P.N., Fraga, M.A., Oliva, S.T., Marchetti, S.G., Rangel, M.C. (2017). Methylene blue oxidation over iron oxid...vated carbon derived from peanut hulls. Catal. Today. 289, 237–248. DOI: 10.1016/j.cattod.2016.11.036
  26. Maniyazagan, M., Naveenkumar, P., Yang, H.W., Zuhaib, H., Kang, W.S., Kim, S.J. (2022). Hierarchical SiO2@FeCo2O4 core-shell nanoparticles for catalytic reduction of 4-nitrophenol and degradation of methylene blue. J. Mol. Catal. A Chem., 365, 120–123. doi: 10.1016/j.molliq.2022.120123
  27. Yuan, B., Xu, J., Li, X., Fu, M.L. (2013). Preparation of Si–Al/α-FeOOH catalyst from an Iron-Containing Waste Surface-Catalytic Oxidation of Methylene Blue at Neutral pH Value in the Presence of H2O2. Chem. Eng. J. 226, 181–188. DOI: 10.1016/j.cej.2013.04.058
  28. Coelho, J.V., Guedes, M.S., Prado, R.G., Tronto, J., Ardisson, J.D., Pereira, M.C., Oliveira, L.C.A. (2014). Effect of iron precursor on the Fenton-like activity of Fe2O3/mesoporous silica catalysts prepared under mild conditions. Appl. Catal. B Environ., 144, pp. 792–799, 2014. doi: 10.1016/j.apcatb.2013.08.022
  29. Hitam, C.N.C., Jalil, A.A., Izan, S.M., Hassim, M.H., Chanlek, N. (2020). The unforeseen relationship of Fe2O3 and ZnO on fibrous silica KCC-1 catalyst for fabricated Z-scheme extractive-photooxidative desulphurization. Powder Technol. 375, 397–408. doi: 10.1016/j.powtec.2020.07.114

Last update:

No citation recorded.

Last update:

No citation recorded.