skip to main content

Synthesis of p-Aminophenol from p-Nitrophenol Using CuO-Nanoleaf/g-Al2O3 Catalyst

1Department of Chemical Engineering, Universitas Indonesia, Depok, 16425, Indonesia

2Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency, Jakarta, 10340, Indonesia

Received: 11 Oct 2022; Revised: 16 Dec 2022; Accepted: 19 Dec 2022; Available online: 21 Dec 2022; Published: 30 Dec 2022.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The CuO-nanoleaf/g-Al2O3 catalyst was synthesized through wet chemical impregnation and had promising catalytic activity in reducing p-Nitrophenol (PNP) into p-Aminophenol (PAP). The synthesis was conducted in situ with Ethylene Glycol as a stabilizer agent of the CuO-nanoleaf structure and g-Al2O3 as catalyst support with high adsorption ability. Furthermore, the crystal phase, morphology, element composition, and specific surface area were investigated by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and N2 adsorption-desorption, respectively. The XRD pattern showed the crystal phase of CuO and g-Al2O3 in the composite, and the morphology was successfully reported using FESEM. The increase in the specific surface area of the catalyst indicates that the CuO material was well composited in g-Al2O3. The catalyst has good activity in reducing PNP to PAP with 93.53% PNP conversion within 4 min. In addition, the reduction reaction of PNP with excess NaBH4 could be categorized as pseudo-first order kinetic with a constant rate of 0.6935 min1 for CuO-nanoleaf/g-Al2O3 catalyst. The loading catalyst and temperature reaction effect on PNP conversion were also investigated. The results showed that 94.18% PNP conversion was obtained within only 2.5 min under the optimized conditions. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: p-Aminophenol; p-Nitrophenol; CuO; γ-Al2O3; Nanoleaf
Funding: National Research and Innovation Agency under contract Universitas Indonesia

Article Metrics:

  1. Du, Y., Chen, H., Chen, R., Xu, N. (2004). Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts. Applied Catalysis A: General, 277 (1-2), 259-264. DOI: 10.1016/j.apcata.2004.09.018
  2. Rode, C., Vaidya, M., Jaganathan, R., Chaudhari, R. (2001). Hydrogenation of nitrobenzene to p-aminophenol in a four-phase reactor: reaction kinetics and mass transfer effects. Chemical Engineering Science, 56 (4), 1299-1304. DOI: 10.1016/S0009-2509(00)00352-3
  3. Komatsu, T., Hirose, T. (2004). Gas phase synthesis of para-aminophenol from nitrobenzene on Pt/zeolite catalysts. Applied Catalysis A: General, 276 (1-2), 95-102. DOI: 10.1016/j.apcata.2004.07.044
  4. Dai, M., Li, H.X., Lang, J.P. (2015). New approaches to the degradation of organic dyes, nitro- and chloro-aromatics using coordination polymers as photocatalysts. CrystEngComm, 17, 4741-4753. DOI: 10.1039/C5CE00619H
  5. Swathi, T., Buvaneswari, G. (2008). Application of NiCo2O4 as a catalyst in the conversion of p-nitrophenol to p-aminophenol. Materials Letters, 62(23), 3900-3902. DOI: 10.1016/j.matlet.2008.05.028
  6. Ellis, F. (2002). Paracetamol: a curriculum resource. Royal Society of Chemistry
  7. Chang, Y.C., Chen, D.H. (2009). Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. Journal of Hazardous Materials, 165(1-3), 664-669. DOI: 10.1016/j.jhazmat.2008.10.034
  8. Lee, J.H., Hong, S.K., Ko, W.B. (2011). Reduction of 4-Nitrophenol Catalyzed by Platinum Nanoparticles Embedded into Carbon Nanocolloid. Asian Journal of Chemistry, 23(5), 2347-2350
  9. Mohamed, M.M., Al-Sharif, M.S. (2012). One pot synthesis of silver nanoparticles supported on TiO2 using hybrid polymers as template and its efficient catalysis for the reduction of 4-nitrophenol. Materials Chemistry and Physics, 136(2-3), 528-537. DOI: 10.1016/j.matchemphys.2012.07.021
  10. Nemanashi, M., Meijboom, R. (2013). Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol. Journal of Colloid and Interface Science, 389(1), 260-267. DOI: 10.1016/j.jcis.2012.09.012
  11. Hernández-Gordillo, A., Arroyo, M., Zanella, R., Rodríguez-González, V. (2014). Photoconversion of 4-nitrophenol in the presence of hydrazine with AgNPs-TiO2 nanoparticles prepared by the sol–gel method. Journal of Hazardous Materials, 268, 84-91. DOI: 10.1016/j.jhazmat.2013.12.069
  12. Jiang, H., Yan, Q., Du, Y., Chen, R. (2016). Synthesis of p-aminophenol from p-nitrophenol reduction over Pd@ ZIF-8. Reaction Kinetics, Mechanisms and Catalysis, 117(1), 307-317. DOI: 10.1007/s11144-015-0928-y
  13. Motta, D. Sanchez, F., Alshammari, K., Chincilla, L. E., Botton, G A., Morgan, D., Tabanelli, T., Villa, A., Hammond, C., Dimitratos, N. (2019). Preformed Au colloidal nanoparticles immobilised on NiO as highly efficient heterogeneous catalysts for reduction of 4-nitrophenol to 4-aminophenol. Journal of Environmental Chemical Engineering, 7(5), 103381. DOI: 10.1016/j.jece.2019.103381
  14. Tian, X., Zahid, M., Li, J., Sun, W., Niu, X., Zhu, Y. (2020). Pd/Mo2N-TiO2 as efficient catalysts for promoted selective hydrogenation of 4-nitrophenol: A green bio-reducing preparation method. Journal of Catalysis, 391, 190-201. DOI: 10.1016/j.jcat.2020.08.027
  15. Wunder, S., Polzer, F., Lu, Y., Mei, Y., Ballauff, M. (2010). Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. The Journal of Physical Chemistry C, 114(19), 8814-8820. DOI: 10.1021/jp101125j
  16. Kassem, A. A., Abdelhamid, H. N., Fouad, D. M., Ibrahim, S. A. (2020). Catalytic reduction of 4-nitrophenol using copper terephthalate frameworks and CuO@ C composite. Journal of Environmental Chemical Engineering, 9(1), 104401. DOI: 10.1016/j.jece.2020.104401
  17. Aditya, T., Jana, J., Singh, N., Pal, K. A., Pal, T. (2017). Remarkable Facet Selective Reduction of 4-Nitrophenol by Morphologically Tailored (111) Faceted Cu2O Nanocatalyst. ACS Omega, 2(5), 1968-1984. DOI: 10.1021/acsomega.6b00447
  18. Sahu, K., Singh, J., Mohapatra, S. (2019). Catalytic reduction of 4-nitrophenol and photocatalytic degradation of organic pollutants in water by copper oxide nanosheets. Optical Materials, 93, 58-69. DOI: 10.1016/j.optmat.2019.05.007
  19. Che, W., Ni, Y., Zhang, Y., Ma, Y. (2015). Morphology-controllable synthesis of CuO nanostructures and their catalytic activity for the reduction of 4-nitrophenol. Journal of Physics and Chemistry of Solids, 77, 1-7. DOI: 10.1016/j.jpcs.2014.09.006
  20. Bhattacharjee, A., Ahmaruzzaman, M. (2016). CuO nanostructures: facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase. RSC Advances, 6(47), 41348-41363. DOI: 10.1039/C6RA03624D
  21. Sahu, K., Singhal, R., Mohapatra, S. (2020). Morphology controlled CuO nanostructures for efficient catalytic reduction of 4-nitrophenol. Catalysis Letters, 150(2), 471-481. DOI: 10.1007/s10562-019-03009-w
  22. Anu Prathap, M.U., Kaur, B., Srivastava, R. (2012). Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. Journal of Colloid and Interface Science, 370(1), 144-154. DOI: 10.1016/j.jcis.2011.12.074
  23. Hong, J., Li, J., Ni, Y. (2009). Urchin-like CuO microspheres: Synthesis, characterization, and properties. Journal of Alloys and Compounds, 481(1-2), 610-615. DOI: 10.1016/j.jallcom.2009.03.043
  24. Zhang, M., Xu, X., Zhang, M. (2008). Microwave‐Assisted Synthesis and Characterization of CuO Nanocrystals. Journal of Dispersion Science and Technology, 29(4), 508-513. DOI: 10.1080/01932690701728734
  25. Gao, D., Yang, G., Li, J., Zhang, J., Zhang, J., Xue, D. (2010). Room-temperature ferromagnetism of flowerlike CuO nanostructure. The Journal of Physical Chemistry C, 114(43), 18347-18351. DOI: 10.1021/jp106015t
  26. Chen, L., Shet, S., Tang, H., Wang, H., Deutsch, T., Yan, Y., Turner, T., Al-Jassim, M. (2010). Electrochemical deposition of copper oxide nanowires for photoelectrochemical applications. Journal of Materials Chemistry, 20(33), 6962-6967. DOI: 10.1039/C0JM01228A
  27. Ethiraj, A.S., Kang, D.J. (2012). Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale research letters, 7(1), 70. DOI: 10.1186/1556-276X-7-70
  28. Wang, W., Liu, Z., Liu, Y., Xu, C., Zheng, C., Wang, G. (2003). A simple wet-chemical synthesis and characterization of CuO nanorods. Applied Physics A, 76(3), 417-420. DOI: 10.1007/s00339-002-1514-5
  29. Sahu, K., Satpati, B., Singhal, R., Mohapatra, S. (2020). Enhanced catalytic activity of CuO/Cu2O hybrid nanowires for reduction of 4-nitrophenol in water. Journal of Physics and Chemistry of Solids, 136, 109143. DOI: 10.1016/j.jpcs.2019.109143
  30. Farahmandjou, M., Golabiyan, N. (2019). Synthesis and characterisation of Al₂O₃ nanoparticles as catalyst prepared by polymer co-precipitation method. Materials Engineering Research, 1(2), 40-44. DOI: 10.25082/MER.2019.02.002
  31. Ali, S., Abbas, Y., Zuhra, Z., Butler, I.S. (2019). Synthesis of γ-alumina (Al2O3) nanoparticles and their potential for use as an adsorbent in the removal of methylene blue dye from industrial wastewater. Nanoscale Advances, 1(1), 213-218. DOI: 10.1039/C8NA00014J
  32. Pan, W., Zhang, G., Zheng, T., Wang, P. (2015). Degradation of p-nitrophenol using CuO/Al2O3 as a Fenton-like catalyst under microwave irradiation. RSC Advances, 5(34), 27043-27051. DOI: 10.1039/C4RA14516J
  33. Kamal, T. (2019). Aminophenols formation from nitrophenols using agar biopolymer hydrogel supported CuO nanoparticles catalyst. Polymer Testing, 77, 105896. DOI: 10.1016/j.polymertesting.2019.105896
  34. Antony, A., Sun, M.Y., Jin-Hyo, B., You, H.B. (2018). Nano sheets, needles and grains-like CuO/γ-Al2O3 catalysts’ performance in carbon monoxide oxidation. Journal of Solid State Chemistry, 265, 431-439. DOI: 10.1016/j.jssc.2018.06.031
  35. Nandanwar, S.U., Chakraborty M. (2012). Synthesis of colloidal CuO/γ-Al2O3 by microemulsion and its catalytic reduction of aromatic nitro compounds. Chinese Journal of Catalysis, 33(9-10), 1532-1541. DOI: 10.1016/S1872-2067(11)60433-6
  36. Hua, L. Ma, H. Zhang, L. (2013). Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3. Chemosphere, 90(2), 143-149. DOI: 10.1016/j.chemosphere.2012.06.018
  37. Filiz, B.C. (2020). The role of catalyst support on activity of copper oxide nanoparticles for reduction of 4-nitrophenol. Advanced Powder Technology, 31(9), 3845-3859. DOI: 10.1016/j.apt.2020.07.026
  38. Das, R., Sypu, V.S., Paumo, H.K., Bhaumik, M., Maharaj, V., Maity, A. (2019). Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Applied Catalysis B: Environmental, 244, 546-558. DOI: 10.1016/j.apcatb.2018.11.073
  39. Sharma, M., Hazra, S., Basu, S. (2017). Synthesis of heterogeneous Ag-Cu bimetallic monolith with different mass ratios and their performances for catalysis and antibacterial activity. Advanced Powder Technology, 28(11), 3085-3094. DOI: 10.1016/j.apt.2017.09.023
  40. Du, X., He, J., Zhu, J., Sun, L., An, S. (2012). Ag-deposited silica-coated Fe3O4 magnetic nanoparticles catalyzed reduction of p-nitrophenol. Applied Surface Science, 258(7), 2717-2723. DOI: 10.1016/j.apsusc.2011.10.122
  41. Tanabe, Y., Nishibayashi, Y. (2013). Developing more sustainable processes for ammonia synthesis. Coordination Chemistry Reviews, 257(17), 2551-2564. DOI: 10.1016/j.ccr.2013.02.010
  42. Hashimi, A.S., Nohan, M.A.N.M., Chin, S.X., Zakaria, S. Chia, C.H. (2019). Rapid catalytic reduction of 4-nitrophenol and clock reaction of methylene blue using copper nanowires. Nanomaterials, 9(7), 936. DOI: 10.3390/nano9070936
  43. Fu, L., Zhou, W., Wen, M., Wu, Q., Li, W., Wu, D., Zhu, Q., Ran, J., Ren, P. (2021). Layered CuNi-Cu2O/NiAlOx nanocatalyst for rapid conversion of p-nitrophenol to p-aminophenol. Nano Research, 14(12), 4616-4624. DOI: 10.1007/s12274-021-3391-2

Last update:

No citation recorded.

Last update:

No citation recorded.