skip to main content

Synthesis of Bimetallic Metal-Organic Frameworks (MOFs) La-Y-PTC for Enhanced Dyes Photocatalytic Degradation

1Integrated Laboratory Centre, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Ciputat, South Tangerang 15412, Indonesia

2Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Ciputat, Tangerang Selatan 15412, Indonesia

Received: 11 Oct 2022; Revised: 18 Mar 2023; Accepted: 20 Mar 2023; Available online: 27 Mar 2023; Published: 30 Apr 2023.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2023 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Metal-Organic Frameworks (MOFs) is widely utilized as photocatalysts in dye photocatalytic degradation. This study successfully synthesized bimetallic MOFs La-Y-PTC by the solvothermal method. The synthesized La-Y-PTC has a diffractogram pattern with a value of 2θ = 5.69°; 9.57°; 16.8°; 20.05°; 24.8°; 26.15°; 29.77° and 41.93° with a crystal size of 21.45 nm. The La-Y-PTC has symmetric and asymmetric (COO−) at 1591 and 1433 cm1, La−O and Y−O groups at 596 and 659 cm1 and a band gap energy of 2.16 eV. Scanning Electron Microscope analysis showed that the morphology of La-Y-PTC is spherical with a particle size of 354.307 nm. La-Y-PTC degrades methylene blue and methyl orange at pH 2 with a degradation efficiency of 69.57% and 93.63%, respectively, under 250 watts of mercury lamp irradiation for 180 min with hydroxyl radical species as a dominant species that play a role in methylene blue and methyl orange degradations. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Fulltext View|Download
Keywords: Degradation; photocatalyst; methylene blue; methyl orange; La-Y-PTC
Funding: UIN Syarif Hidayatullah Jakarta under contract B-205/LP2M-PUSLITPEN/TL.03/06/2021

Article Metrics:

  1. Priya, A.K., Pachaiappan, R., Kumar, P.S., Jalil and Vo, D.V.N., Rejendran, S. (2021). The War using microbes: a sustainable approach for wastewater management. Environmental Pollution. 275, 116598. DOI: 10.1016/j.envpol.2021.116598
  2. Saeed, M., Usman, M., Haq, A.ul. (2018). Catalytic degradation of organic dyes in aqueous mediom photochemistry and photophysics. Fundamentals to Application. 198-208. DOI: 10.5772/intechopen.75008
  3. Tan, K.A., Morad, N., Ooi, J.Q. (2016). Phytoremediation of methylene blue and methyl orange using Eichhornia crassipes. International Journal of Environmental Science and Development. 7(10), 724-728. DOI: 10.18178/ijesd.2016.7.10.869
  4. Sun, L., Hu, D., Zhang, Z., Deng, X. (2019). Oxidative degradation of methylene blue via pds-based advanced oxidation process using natural pyrite. International Journal of Environmental Research and Public Health. 16(23), 4773. DOI: 10.3390/ijerph16234773
  5. Ahmad, A., Mohd-Setapar, S.H., Chuong, C.S., Khatoon, A., Wani, W.A., Kumar, Rafatullah, M. (2015). Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Advances. 5(39), 30801-30818. DOI: 10.1039/C4RA16959J
  6. Maslukah, L., Yudiati, E. (2017). Model adsorpsi logam berat pb, cu dan zn sistem air-sedimen muara sungai banjir kanal barat Semarang. Maspari Journal. 9(2), 149–158. DOI: 10.56064/maspari.v9i2.4484
  7. Nitsae, M., Solle, H.R.L., Martinus, S.M., Emola, I.J. (2021). Studi adsorpsi metilen biru menggunakan arang aktif tempurung lontar (Borassus flabellifer L.) Asal Nusa Tenggara Timur. Jurnal Kimia Riset, 6(1), 46–57. DOI: 10.20473/jkr.v6i1.24525
  8. Permatasari, T.J., Apriliani, E., Matematika, J., Matematika, F., Alam, P., Ii, K., Di, I.I.I. (2013). Optimasi penggunaan koagulan dalam proses penjernihan air. Jurnal Sains Dan Seni Pomits, 2(1), 6. DOI 10.12962/j23373520.v2i1.3054
  9. Suryandari, A.S., Mustain, A., Pratama, D.W., Maula, I. (2019). Studi aktivitas reaksi fotokatalisis berbasis katalis TiO2-karbon aktif terhadap mutu air limbah power plant. Jurnal Teknik Kimia Dan Lingkungan, 3(2), 95–101. DOI: 10.33795/jtkl.v3i2.124
  10. Li, H.P., Dou, Z., Chen, S.Q., Hu, M., Li, S., Sun, H.M., Jiang, Y., Zhai, Q.G. (2019). Design of a multifunctional indium-organic framework: fluorescent sensing of nitro compounds, physical adsorption, and photocatalytic degradation of organic dyes. Inorganic Chemistry, 58(16), 11220-11230. DOI: 10.1021/acs.inorgchem.9b01862
  11. Zulys, A., Adawiah, A., Gunlazuardi, J., Yudhi, M.D.L. (2021). Light-harvesting metal-organic frameworks (MOFs) La-PTC for photocatalytic dyes degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 170-178. DOI: 10.9767/bcrec.16.1.10309.170-178
  12. Adawiah, A., Yudhi, M.D.L., Zulys, A. (2021). Photocatalytic degradation of methylene blue and methyl orange by Y-PTC metal-organic framework. Jurnal Kimia Valensi, 7(2), 129-141. DOI: 10.15408/jkv.v7i2.22267
  13. Arora, C., Soni, S., Sahu, S., Mittal, J., Kumar, P., Bajpai, P.K. (2019). Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste. Journal of Molecular Liquids, 284, 343-352. DOI: 10.1016/j.molliq.2019.04.012
  14. Herrera, L.A.Á., Reyes, P.K.C., Flores, A.M.H., Martínez, L.T., Villanueva, J.M.R. (2020). BDC-Zn MOF sensitization by mo/mb adsorption for photocatalytic hydrogen evolution under solar light. Materials Science in Semiconductor Processing, 109(1), 1-7. DOI: 10.1016/j.mssp.2020.104950
  15. Tiwari, A., Sagara, P.S., Varma, V., Randhawa, J.K. (2019). Bimetallic metal organic frameworks as magnetically separable heterogeneous catalysts and photocatalytic dye degradation. Chem Plus Chem, 84(1), 136-141. DOI: 10.1002/cplu.201800546
  16. Reddy, M.C., Sivaramakrishna, L., Reddy, A. (2012). The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium. Journal of Hazardous Materials, 203–204, 118–127. DOI: 10.1016/j.jhazmat.2011.11.083
  17. Prabhu, S.M., Imamura, S., Sasaki, K. (2019). Mono-, di-, and tricarboxylic acid facilitated lanthanum-based organic frameworks: insights into the structural stability and mechanistic approach for superior adsorption of arsenate from water [research-article]. ACS Sustainable Chemistry and Engineering, 7(7), 6917-6928. DOI: 10.1021/acssuschemeng.8b06489
  18. Yang, T., Xiang, Q., Feng, L., Dong, C., Zhang, X., Ning, Z., Lai, X. (2019) Yttrium-based metal-organic frameworks: controllable synthesis, growth mechanism and the phase transformation to Y2O3: Eu3+ Phosphors. Journal of Luminescene, 214(3), 116567. DOI: 10.1016/j.jlumin.2019.116567
  19. Shadmehr, J., Zeinali, S., Tohidi, M. (2019). Synthesis of a chromium terephthalate metal organic framework and use as nanoporous adsorbent for removal of diazinon organophosphorus insecticide from aqueous media. Journal of Dispersion Science and Technology, 40(10), 1423-1440. DOI: 10.1080/01932691.2018.1516149
  20. Lin, C. K., Zhao, D., Gao, W.Y., Yang, Z., Ye, J., Xu, T., Ge, Q., Ma, S., Liu, D.J. (2012). Tunability of band gaps in metal-organic frameworks. Inorganic Chemistry, 51(16), 9039–9044. DOI: 10.1021/ic301189m
  21. Chen, L., Wang, H. F., Li, C., Xu, Q. (2020). Bimetallic metal-organic frameworks and their derivatives. Chemical Science, 11(21), 5369–5403. DOI: 10.1039/D0SC01432J
  22. Behrsing, T., Deacon, G.B., Junk, P.C. (2014). The Chemistry of Rare Earth Metals, Compounds, and Corrosion Inhibitors. in In Rare Earth-Based Corrosion Inhibitors, Australia, Woodhead Publishing Limited. 1-37. DOI: 10.1533/9780857093585.1
  23. Guo, C., Guo, J., Zhang, Y., Wang, D., Zhang, L., Guo, Y., Ma, W., Wang, J. (2018). Synthesis of core-shell ZIF-67@Co-MOF-74 catalyst with controllable shell thickness and enhanced photocatalytic activity for visible light-driven water oxidation. Cryst Eng Comm, 20(47), 7659-7665. DOI: 10.1039/C8CE01266K
  24. Kumari, A., Kaushal, S., Singh, P.P. (2021). Bimetallic metal organic frameworks heterogeneous catalysts: design, construction, and applications. Materials Today Energy, 20, 100667. DOI: 10.1016/j.mtener.2021.100667
  25. Kumar, A., Pandey, G. (2017). A review on the factors affecting the photocatalytic degradation of hazardous materials. Material Science & Engineering International Journal, 1(3), 106–114. DOI: 10.15406/mseij.2017.01.00018
  26. Chen, X., Mao, S. S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chemical Reviews, 107(7), 2891–2959. DOI: 10.1021/cr0500535
  27. Krishnan, J., Arvind Kishore, A., Suresh, A., Madhumeetha, B., Gnana Prakash, D. (2017). Effect of pH, inoculum dose and initial dye concentration on the removal of azo dye mixture under aerobic conditions. International Biodeterioration and Biodegradation, 119, 16-27. DOI: 10.1016/j.ibiod.2016.11.024
  28. Samuel, M.S., Bhattacharya, J., Parthiban, C., Viswanathan, G., Pradeep Singh, N.D. (2018). Ultrasound-assisted synthesis of metal organic framework for the photocatalytic reduction of 4-nitrophenol under direct sunlight. Ultrasonics Sonochemistry, 49, 215-221. DOI: 10.1016/j.ultsonch.2018.08.004
  29. Zein, R., Chaidir, Z., Zilfa, Z., Fauzia, S., Ramadhani, P. (2022). Isotherm and Kinetic Studies on the Adsorption Behavior of Metanil Yellow Dyes onto Modified Shrimp Shell-Polyethylenimine (SS-PEI). Jurnal Kimia Valensi, 8(1), 10-22. DOI: 10.15408/jkv.v8i1.22566
  30. Yin, X.J., Zhu, L.G. (2019). High-efficiency photocatalytic performance and mechanism of silver-based metal–organic framework. Journal of Materials Research, 34(6), 991–998. DOI: 10.1557/jmr.2018.507
  31. Zebardast, M., Shojaei, A.F., Tabatabaeian, K. (2018). Enhanced removal of methylene blue dye by bimetallic nano-sized MOF-5s. Iranian Journal of Catalyst, 8(4), 297-309
  32. Khade, G.V., Gavade, N.L., Suwarnkar, M.B., Dhanavade, M.J., Sonawane, K.D., Garadkar, K. (2017). Enhanced photocatalytic activity of europium doped tio2 under sunlight for the degradation of methyl orange. Journal of Materials Science: Material in Electronics. 28(15), 11002-11011. DOI: 10.1007/s10854-017-6883-9
  33. Pingmuang, K., Chen, J., Kangwansupamonkon, W., Wallace, G.G., Phanichphant, S., Nattestad, A. (2017). Composite photocatalysts containing bivo4 for degradation of cationic dyes. Scientific Reports, 7, 1-11. DOI: 10.1038/s41598-017-09514-5
  34. Samsudin, M.F.R., Lim, T.S., Sufian, S., Bashiri, R., Muti, M.N., Mahirah, R.R. (2018). Exploring the role of electron-hole scavengers on optimizing the photocatalytic performance of BiVO4. Materials Today: Proceedings, 5(10), 21703-21709. DOI: 10.1016/j.matpr.2018.07.022
  35. Yahya, N., Aziz, F., Jamaludin, N.A., Mutalib, M.A., Ismail, A.F., Salleh, W.N.W., Jaafar, J., Yusof, N., Ludin, N.A. (2018). A review of integrated photocatalyst adsorbents for wastewater treatment. Enviromental Chemical Engineering, 06(051), 1–55. DOI: 10.1016/j.jece.2018.06
  36. Shayegan, Z., Lee, C.S., Haghighat, F. (2018). TiO2 photocatalyst for removal of volatile organic compounds in gas phase – a review. Chemical Engineering Journal, 334, 2408-2439. DOI: 10.1016/j.cej.2017.09.153

Last update:

No citation recorded.

Last update:

No citation recorded.