skip to main content

Preparation of B/ZnO Nanocomposite by Simple Mechanical Combustion Method for Removal of Antibiotics in Aqueous Environments

School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam

Received: 6 Oct 2022; Revised: 22 Nov 2022; Accepted: 22 Nov 2022; Available online: 7 Dec 2022; Published: 30 Dec 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

In this study, the B/ZnO nanocomposite was successfully synthesized by a simple mechanical combustion method. This material was used as a photocatalyst to degrade tetracycline, a representative of the commonly used antibiotics today. The B/ZnO composite became tighter than that of pure ZnO and formed bulk particles. The band gap energy of B/ZnO (3.05 eV) was slightly lower than that of ZnO (3.10 eV), resulting that it being easier to absorb visible light to create electron-hole pairs (h+ and e). Therefore, the B/ZnO composite had higher photocatalytic activity than pure ZnO. The ratio of boron-doped to ZnO affecting the photocatalysis efficiency was investigated and the optimal boron content was 3 wt%, its degradation efficiency (DE) value for tetracycline hydrochloride (TCH) in 90 min and the rate constants were 90% and 0.054 min1, respectively. The factors affecting the photocatalytic process like initial antibiotic concentration, catalyst content, and pH of the initial antibiotic solution were studied. In addition, the recovery and reuse of B/ZnO after photocatalytic treatment were also studied. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: ZnO; B/ZnO; Photocatalyst; Antibiotics; Visible Light
Funding: Vietnam National Foundation for Science and Technology Development (NAFOSTED) under contract grant number 104.05-2018.333

Article Metrics:

  1. Hao, R., Xiao, X., Zuo, X., Nan, J., Zhang, W. (2012). Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. Journal of Hazardous Materials, 209-210, 137-145. DOI: 10.1016/j.jhazmat.2012.01.006
  2. Hoa, P.T.P., Managaki, S., Nakada, N., Takada, H., Shimizu, A., Anh, D.H., Viet, P.H., Suzuki, S. (2011). Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam. Science of The Total Environment, 409(15), 2894-2901. DOI: 10.1016/j.scitotenv.2011.04.030
  3. Rizzo, L., Lofrano, G., Gago, C., Bredneva, T., Iannece, P., Pazos, M., Krasnogorskaya, N., Carotenuto, M. (2018). Antibiotic contaminated water treated by photo driven advanced oxidation processes: Ultraviolet/H2O2 vs ultraviolet/peracetic acid. Journal of Cleaner Production, 205, 67-75. DOI: 10.1016/j.jclepro.2018.09.101
  4. Shejale, K.P., Yadav, D., Patil, H., Saxena, S., Shukla, S. (2020). Evaluation of techniques for the remediation of antibiotic-contaminated water using activated carbon. Molecular Systems Design & Engineering, 5(4), 743-756. DOI: 10.1039/c9me00167k
  5. Pei, C.-Y., Chen, Y.-G., Wang, L., Chen, W., Huang, G.-B. (2021). Step-scheme WO3/CdIn2S4 hybrid system with high visible light activity for tetracycline hydrochloride photodegradation. Applied Surface Science, 535, 147682. DOI: 10.1016/j.apsusc.2020.147682
  6. Pawinrat, P., Mekasuwandumrong, O., Panpranot, J. (2009). Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catalysis Communications, 10(10), 1380-1385. DOI: 10.1016/j.catcom.2009.03.002
  7. Pereira, J.H.O.S., Vilar, V.J.P., Borges, M.T., González, O., Esplugas, S., Boaventura, R.A.R. (2011). Photocatalytic degradation of oxytetracycline using TiO2 under natural and simulated solar radiation. Solar Energy, 85(11), 2732-2740. DOI: 10.1016/j.solener.2011.08.012
  8. Viet, N.M., Trung, D.Q., Giang, B.L., Tri, N.L.M., Thao, P., Pham, T.H., Kamand, F.Z., Al Tahtamouni, T.M. (2019). Noble metal -doped graphitic carbon nitride photocatalyst for enhancement photocatalytic decomposition of antibiotic pollutant in wastewater under visible light. Journal of Water Process Engineering, 32, 100954. DOI: 10.1016/j.jwpe.2019.100954
  9. Thi, T.A.N., Vu, A.T. (2022). Nanocomposite ZnO/g-C3N4 for Improved Degradation of Dyes under Visible Light: Facile Preparation, Characterization, and Performance Investigations. Bulletin of Chemical Reaction Engineering & Catalysis, 17(2), 403-419. DOI: 10.9767/bcrec.17.2.13931.403-419
  10. Andrade, G.R.S., Nascimento, C.C., Silva Júnior, E.C., Mendes, D.T.S.L., Gimenez, I.F. (2017). ZnO/Au nanocatalysts for enhanced decolorization of an azo dye under solar, UV-A and dark conditions. Journal of Alloys and Compounds, 710, 557-566. DOI: 10.1016/j.jallcom.2017.03.295
  11. Cheng, Y.E., Jiao, W., Li, Q., Zhang, Y., Li, S., Li, D., Che, R. (2018). Two hybrid Au-ZnO aggregates with different hierarchical structures: A comparable study in photocatalysis. Journal of Colloid and Interface Science, 509, 58-67. DOI: 10.1016/j.jcis.2017.08.077
  12. Verma, S., Rao, B.T., Jayabalan, J., Rai, S.K., Phase, D.M., Srivastava, A.K., Kaul, R. (2019). Studies on growth of Au cube-ZnO core-shell nanoparticles for photocatalytic degradation of methylene blue and methyl orange dyes in aqueous media and in presence of different scavengers. Journal of Environmental Chemical Engineering, 7(4), 103209. DOI: 10.1016/j.jece.2019.103209
  13. Tuan, V.A., Tuyet, P.T.A., Truong, D.X., Anh, T.V., Duong, L.V., Duc, T.D., Huu, N.T., Viet, N.M. (2021). Preparation of Hierarchical Structure Au/ZnO Composite for Enhanced Photocatalytic Performance: Characterization, Effects of Reaction Parameters, and Oxidizing Agent Investigations. Adsorption Science & Technology, 2021, 5201497. DOI: 10.1155/2021/5201497
  14. Wu, J.-J., Tseng, C.-H. (2006). Photocatalytic properties of nc-Au/ZnO nanorod composites. Applied Catalysis B: Environmental, 66(1-2), 51-57. DOI: 10.1016/j.apcatb.2006.02.013
  15. Tuyet, P.T.A., Anh, T.V., Duong, L.V., Viet, N.M., Duc, T.D., Truong, D.X., Anh, T.V. (2020). Facile preparation of ZnO nanoparticles and Ag/ZnO nanocomposite and their photocatalytic activities under visible light. International Journal of Photoenergy, 2020, 8897667. DOI: 10.1155/2020/8897667
  16. Ren, C., Yang, B., Wu, M., Xu, J., Fu, Z., Iv, Y., Guo, T., Zhao, Y., Zhu, C. (2010). Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. Journal of Hazardous Materials, 182(1-3), 123-9. DOI: 10.1016/j.jhazmat.2010.05.141
  17. Tuan, V.A., Tuyet, P.T.A., Thuy, T.T., Truong, N.X., Quynh, T.T., Tung, T.Q., Nghia, N.T., Van, D.T., Duong, V.T., Long, N.C., Viet, N.M., Ha, L.C. (2020). Synthesis of Nano-Flakes Ag•ZnO•Activated Carbon Composite from Rice Husk as A Photocatalyst under Solar Light. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 264-279. DOI: 10.9767/bcrec.15.1.5892.264-279
  18. Ahmed, A.Z., Islam, M.M., Islam, M.M.u., Masum, S.M., Islam, R., Molla, M.A.I. (2020). Fabrication and characterization of B/Sn-doped ZnO nanoparticles via mechanochemical method for photocatalytic degradation of rhodamine B. Inorganic and Nano-Metal Chemistry, 51(10), 1369–1378. DOI: 10.1080/24701556.2020.1835976
  19. Liu, Z., Cai, X., Fan, S., Zhang, Y., Hu, H., Huang, Z., Liang, J., Qin, Y. (2021). Preparation of a stable polyurethane sponge supported Sn-doped ZnO composite via double-template-regulated bionic mineralization for visible-light-driven photocatalytic degradation of tetracycline. Journal of Environmental Chemical Engineering, 9(4), 105541. DOI: 10.1016/j.jece.2021.105541
  20. Núñez-Salas, R.E., Rodríguez-Chueca, J., Hernández-Ramírez, A., Rodríguez, E., Maya-Treviño, M.d.L. (2021). Evaluation of B-ZnO on photocatalytic inactivation of Escherichia coli and Enterococcus sp. Journal of Environmental Chemical Engineering, 9(1), 104940. DOI: 10.1016/j.jece.2020.104940
  21. Kabir, R., Saifullah, M.A.K., Ahmed, A.Z., Masum, S.M., Molla, M.A.I. (2020). Synthesis of N-Doped ZnO Nanocomposites for Sunlight Photocatalytic Degradation of Textile Dye Pollutants. Journal of Composites Science, 4(2), 49. DOI: 10.3390/jcs4020049
  22. Patil, A.B., Patil, K.R., Pardeshi, S.K. (2011). Enhancement of oxygen vacancies and solar photocatalytic activity of zinc oxide by incorporation of nonmetal. Journal of Solid State Chemistry, 184(12), 3273-3279. DOI: 10.1016/j.jssc.2011.10.016
  23. Wang, W., Ai, T., Yu, Q. (2017). Electrical and photocatalytic properties of boron-doped ZnO nanostructure grown on PET-ITO flexible substrates by hydrothermal method. Scientific Reports, 7, 42615. DOI: 10.1038/srep42615
  24. Yi, S., Cui, J., Li, S., Zhang, L., Wang, D., Lin, Y. (2014). Enhanced visible-light photocatalytic activity of Fe/ZnO for rhodamine B degradation and its photogenerated charge transfer properties. Applied Surface Science, 319, 230-236. DOI: 10.1016/j.apsusc.2014.06.151
  25. Yu, Q., Li, J., Li, H., Wang, Q., Cheng, S., Li, L. (2012). Fabrication, structure, and photocatalytic activities of boron-doped ZnO nanorods hydrothermally grown on CVD diamond film. Chemical Physics Letters, 539-540, 74-78. DOI: 10.1016/j.cplett.2012.04.051
  26. Ngoc, K.H.P., Vu, A.T. (2022). Simple Preparation of the CuO• Fe3O4/Silica Composite from Rice Husk for Enhancing Fenton-Like Catalytic Degradation of Tartrazine in a Wide pH Range. Adsorption Science & Technology, 2022, 6454354. DOI: 10.1155/2022/6454354
  27. Tu, V.A., Tuan, V.,A. (2018). A facile and fast solution chemistry synthesis of porous ZnO nanoparticles for high efficiency photodegradation of tartrazine. Vietnam Journal of Chemistry, 56(2), 214-219. DOI: 10.1002/vjch.201800016
  28. Mai, L.T., Hoai, L.T., Tuan, V.A. (2018). Effects of reaction parameters on photodegradation of caffeine over hierarchical flower-like ZnO nanostructure. Vietnam Journal of Chemistry, 56(5), 647-653. DOI: 10.1002/vjch.201800064
  29. Behnajady, M.A., Modirshahla, N., Hamzavi, R. (2006). Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst. Journal of Hazardous Materials, 133(1-3), 226-232. DOI: 10.1016/j.jhazmat.2005.10.022
  30. Krishnakumar, B., Selvam, K., Velmurugan, R., Swaminathan, M. (2012). Influence of operational parameters on photodegradation of Acid Black 1 with ZnO. Desalination and Water Treatment, 24(1-3), 132-139. DOI: 10.5004/dwt.2010.1466
  31. Liu, M., Hou, L.A., Yu, S., Xi, B., Zhao, Y., Xia, X. (2013). MCM-41 impregnated with A zeolite precursor: Synthesis, characterization and tetracycline antibiotics removal from aqueous solution. Chemical Engineering Journal, 223(100), 678-687. DOI: 10.1016/j.cej.2013.02.088
  32. Bechambi, O., Najjar, W., Sayadi, S. (2016). The nonylphenol degradation under UV irradiation in the presence of Ag–ZnO nanorods: Effect of parameters and degradation pathway. Journal of the Taiwan Institute of Chemical Engineers, 60, 496-501. DOI: 10.1016/j.jtice.2015.11.017
  33. Núñez-Salas, R.E., Hernández-Ramírez, A., Hinojosa-Reyes, L., Guzmán-Mar, J.L., Villanueva-Rodriguez, M., de Lourdes Maya-Trevino, M.J.C.T. (2019). Cyanide degradation in aqueous solution by heterogeneous photocatalysis using boron-doped zinc oxide. Catalysis Today, 328, 202-209. DOI: 10.1016/j.cattod.2018.11.061

Last update:

No citation recorded.

Last update:

No citation recorded.