skip to main content

Effect of Precursor and Temperature Annealing on the Catalytic Activity of Intermetallic Ni3Sn2 Alloy

1Department of Chemistry, Lambung Mangkurat University, Jl. A. Yani Km 36, Banjarbaru 70714, Indonesia

2Inorganic Materials and Catalysis (IMCat), Lambung Mangkurat University, Jl. A. Yani Km 36, Banjarbaru 70714, Indonesia

3Department of Physics, Lambung Mangkurat University, Jl. A. Yani Km 36, Banjarbaru 70714, Indonesia

4 Department of Mechanical Engineering, Lambung Mangkurat University, Jl. A. Yani Km 35.5, Banjarbaru 70714, Indonesia

View all affiliations
Received: 21 Sep 2022; Revised: 30 Oct 2022; Accepted: 30 Oct 2022; Available online: 7 Nov 2022; Published: 30 Dec 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

The effect of nickel precursors and the temperature annealing to obtain intermetallic Ni3Sn2 alloy catalysts on its activity and selectivity in the selective hydrogenation of biomass-derived furfural (FFald) were investigated. Two types of nickel precursors (c.a., i) nickel metal (Ni°) derived from Raney®nickel and ii) nickel ion (Ni2+) derived from nickel chloride) were employed as the starting materials via hydrothermal at 423 K for 24 h followed by reduction with H2 at the elevated temperature of 573-873 K for 1.5 h. The physico-chemical properties of the intermetallic Ni3Sn2 were characterized by XRD, N2-, and H2-adsorption, ICP-AES, and NH3-TPD. The intermetallic Ni3Sn2 alloy catalysts, both bulk and supported, demonstrated high activity and selectivity towards hydrogenation of FFald. The activity and selectivity of g-Al2O3 and AA-supported Ni3Sn2 alloy catalysts in the hydrogenation of FFald to furfuryl alcohol (FFalc) were maintained even after annealing at up to 873 K, but that of bulk Ni3Sn2 drastically dropped. Ni-Sn alloy catalysts which were obtained from Raney®Ni precursor showed more stable than that of nickel salts during hydrogenation of furfural to furfuryl alcohol. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: intermetallic Ni3Sn2; bulk structure; supported Ni3Sn2; selective hydrogenation; furfural;
Funding: Ministry of Education, Culture, Research & Technology, Republic of Indonesia under contract PDKN No. 026/E5/PG.02.00.PT/2022

Article Metrics:

  1. Bozell, J.J., Petersen, G.R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “top 10” revisited. Green Chemistry, 12(4), 539–55. DOI: 10.1039/b922014c
  2. Clark, J.H., Luque, R., Matharu, A.S. (2012). Green Chemistry, Biofuels, and Biorefinery. Annual Review of Chemical and Biomolecular Engineering, 3(1), 183–207. DOI: 10.1146/annurev-chembioeng-062011-081014
  3. Esposito, D., Antonietti, M. (2015). Redefining biorefinery: the search for unconventional building blocks for materials. Chemical Society Reviews, 44(16), 5821–5835. DOI: 10.1039/c4cs00368c
  4. Alonso, D.M., Wettstein, S.G., Dumesic, J.A. (2012). Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chemical Society Reviews, 41(24), 8075–8098. DOI: 10.1039/c2cs35188a
  5. Tomishige, K., Nakagawa, Y., Tamura, M. (2020). Design of supported metal catalysts modified with metal oxides for hydrodeoxygenation of biomass-related molecules. Current Opinion in Green and Sustainable Chemistry, 22, 13–21. DOI: 10.1016/j.cogsc.2019.11.003
  6. Sachtler, W.M.H., van Santen, R.A. (1977). Surface Composition and Selectivity of Alloy Catalysts. Advances in Catalysis, 26(C), 69–119. DOI: 10.1016/S0360-0564(08)60070-X
  7. Sankar, M., Dimitratos, N., Miedziak, P.J., Wells, P.P., Kiely, C.J., Hutchings, G.J. (2012). Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews, 41(24), 8099–8139. DOI: 10.1039/c2cs35296f
  8. Li, X., Wan, W., Kattel, S., Chen, J.G., Wang, T. (2016). Selective hydrogenation of biomass-derived 2(5H)-furanone over Pt-Ni and Pt-Co bimetallic catalysts: From model surfaces to supported catalysts. Journal of Catalysis, 344, 148–156. DOI: 10.1016/j.jcat.2016.09.027
  9. Kon, K., Onodera, W., Takakusagi, S., Shimizu, K.I. (2014). Hydrodeoxygenation of fatty acids and triglycerides by Pt-loaded Nb2O5catalysts. Catalysis Science and Technology, 4(10), 3705–3712. DOI: 10.1039/c4cy00757c
  10. Sun, K.Q., Hong, Y.C., Zhang, G.R., Xu, B.Q. (2011). Synergy between Pt and Au in Pt-on-Au nanostructures for chemoselective hydrogenation catalysis. ACS Catalysis, 1(10), 1336–1346. DOI: 10.1021/cs200247r
  11. Xue, Z., Liu, Q., Wang, J., Mu, T. (2018). Valorization of levulinic acid over non-noble metal catalysts: Challenges and opportunities. Green Chemistry, 20(19), 4391–4408. DOI: 10.1039/c8gc02001a
  12. De, S., Zhang, J., Luque, R., Yan, N. (2016). Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy and Environmental Science, 9(11), 3314–3347. DOI: 10.1039/c6ee02002j
  13. Ghatak, A., Das, M. (2021). The Recent Progress on Supported and Recyclable Nickel Catalysts towards Organic Transformations: A Review. ChemistrySelect, 6(15), 3656–3682. DOI: 10.1002/slct.202100727
  14. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2012). A novel preparation method of Ni-Sn alloy catalysts supported on aluminium hydroxide: Application to chemoselective hydrogenation of unsaturated carbonyl compounds. Chemistry Letters, 41(8), 769–771. DOI: 10.1246/cl.2012.769
  15. Rodiansono, R., Khairi, S., Hara, T., Ichikuni, N., Shimazu, S. (2012). Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni-Sn alloy catalysts. Catalysis Science and Technology, 2(10), 2139–2145. DOI: 10.1039/c2cy20216f
  16. Putro, W.S., Hara, T., Ichikuni, N., Shimazu, S. (2017). Efficiently recyclable and easily separable Ni-Fe alloy catalysts for chemoselective hydrogenation of biomass-derived furfural. Chemistry Letters, 46(1), 149–151. DOI: 10.1246/cl.160905
  17. Putro, W.S., Kojima, T., Hara, T., Ichikuni, N., Shimazu, S. (2017). Selective hydrogenation of unsaturated carbonyls by Ni-Fe-based alloy catalysts. Catalysis Science & Technology, 7(16), 3637–3646. DOI: 10.1039/c7cy00945c
  18. Rodiansono, R., Astuti, M.D., Santoso, U.T., Shimazu, S. (2015). Hydrogenation of Biomass-derived Furfural Over Highly Dispersed-Aluminium Hydroxide Supported Ni-Sn(3.0) Alloy Catalysts. Procedia Chemistry, 16, 531–539. DOI: 10.1016/j.proche.2015.12.089
  19. Rodiansono, R., Astuti, M.D., Khairi, S., Shimazu, S. (2016). Selective hydrogenation of biomass-derived furfural over supported Ni3Sn2 alloy: Role of supports. Bulletin of Chemical Reaction Engineering & Catalysis, 11(1), 1–9. DOI: 10.9767/bcrec.11.1.393.1-9
  20. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2014). Development of nanoporous Ni-Sn alloy and application for chemoselective hydrogenation of furfural to furfuryl alcohol. Bulletin of Chemical Reaction Engineering and Catalysis, 9(1), 53–59. DOI: 10.9767/bcrec.9.1.5529.53-59
  21. Rodiansono, R., Astuti, M.D., Mujiyanti, D.R., Santoso, U.T., Shimazu, S. (2018). Novel preparation method of bimetallic Ni-In alloy catalysts supported on amorphous alumina for the highly selective hydrogenation of furfural. Molecular Catalysis, 445, 52–60. DOI: 10.1016/j.mcat.2017.11.004
  22. Yamanaka, N., Hara, T., Ichikuni, N., Shimazu, S. (2019). Chemoselective hydrogenation of 4-nitrostyrene to 4-aminostyrene by highly efficient TiO2 supported Ni3Sn2 alloy catalyst. Bulletin of the Chemical Society of Japan, 92(4), 811–816. DOI: 10.1246/bcsj.20180381
  23. Yamanaka, N., Hara, T., Ichikuni, N., Shimazu, S. (2018). Chemoselective hydrogenation of unsaturated nitro compounds to unsaturated amines by Ni-Sn alloy catalysts. Chemistry Letters, 47(8), 971–974. DOI: 10.1246/cl.180458
  24. Onda, A., Komatsu, T., Yashima, T. (2000). Characterization and catalytic properties of Ni-Sn intermetallic compounds in acetylene hydrogenation. Physical Chemistry Chemical Physics, 2(13), 2999–3005. DOI: 10.1039/b001381l
  25. Onda, A., Komatsu, T., Yashima, T. (2001). Preparation and catalytic properties of single-phase Ni-Sn intermetallic compound particles by CVD of Sn(CH3)4 onto Ni/silica. Journal of Catalysis, 201(1), 13–21. DOI: 10.1006/jcat.2001.3231
  26. Shabaker, J.W., Huber, G.W., Dumesic, J.A. (2004). Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts. Journal of Catalysis, 222(1), 180–191. DOI: 10.1016/j.jcat.2003.10.022
  27. Huber, G.W., Shabaker, J.W., Dumesic, J.A. (2003). Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons. Science, 300(5628), 2075–2077. DOI: 10.1126/science.1085597
  28. Marakatti, V.S., Arora, N., Rai, S., Sarma, S.C., Peter, S.C. (2018). Understanding the Role of Atomic Ordering in the Crystal Structures of NixSny toward Efficient Vapor Phase Furfural Hydrogenation. ACS Sustainable Chemistry and Engineering, 6(6), 7325–7338. DOI: 10.1021/acssuschemeng.7b04586
  29. Petró, J., Bóta, A., László, K., Beyer, H., Kálmán, E., Dódony, I. (2000). A new alumina-supported, not pyrophoric Raney-type Ni-catalyst. Applied Catalysis A: General, 190(1–2), 73–86. DOI: 10.1016/S0926-860X(99)00267-7
  30. Rodiansono, R., Astuti, M.D., Hara, T., Ichikuni, N., Shimazu, S. (2016). Efficient hydrogenation of levulinic acid in water using a supported Ni-Sn alloy on aluminium hydroxide catalysts. Catalysis Science and Technology, 6(9), 2955–2961. DOI: 10.1039/c5cy01731a
  31. Rodiansono, R., Astuti, M.D., Mustikasari, K., Husain, S., Sutomo (2020). Recent progress in the direct synthesis of γ-valerolactone from biomass-derived sugars catalyzed by RANEY® Ni-Sn alloy supported on aluminium hydroxide. Catalysis Science and Technology, 10(22), 7768–7778. DOI: 10.1039/d0cy01356k
  32. ICDD (1991). International centre for diffraction data (ICDD)
  33. Onda, A., Komatsu, T., Yashima, T. (1998). Preparation and catalytic properties of single phase Ni-Sn intermetallic compound particles by CVD of Sn(CH3)4 onto Ni/silica. Chemical Communications, (15), 1507–1508. DOI: 10.1039/a803071e
  34. Agnelli, M., Louessard, P., el Mansour, A., Candy, J.P., Bournonville, J.P., Basset, J.M. (1989). Surface organometallic chemistry on metals preparation of new selective bimetallic catalysts by reaction of tetra-n-butyl tin with silica supported Rh, Ru and Ni. Catalysis Today, 6(1–2), 63–72. DOI: 10.1016/0920-5861(89)85007-2
  35. Sweegers, C., Plomp, M., de Coninck, H.C., Meekes, H., van Enckevort, W.J.P., Hiralal, I.D.K., Rijkeboer, A. Surface topography of gibbsite crystals grown from aqueous sodium aluminate solutions. Applied Surface Science, 187(3–4), 218–234. DOI: 10.1016/S0169-4332(01)00995-3
  36. Sweegers, C., de Coninck, H.C., Meekes, H., van Enckevort, W.J.P., Hiralal, I.D.K., Rijkeboer, A. (2001). Morphology, evolution and other characteristics of gibbsite crystals grown from pure and impure aqueous sodium aluminate solutions. Journal of Crystal Growth. 233(3), 567–582. DOI: 10.1016/S0022-0248(01)01615-3
  37. Lefè, G., Fédoroff, M. (2002). Synthesis of bayerite (h-Al(OH)3) microrods by neutralization of aluminate ions at constant pH. Materials Letters, 56(6), 978–983. DOI: 10.1016/S0167-577X(02)00650-X
  38. Sun, R., Zheng, M., Pang, J., Liu, X., Wang, J., Pan, X., Wang, A., Wang, X., Zhang, T. (2016). Selectivity-Switchable Conversion of Cellulose to Glycols over Ni–Sn Catalysts. ACS Catalysis, 6(1), 191–201. DOI: 10.1021/acscatal.5b01807
  39. Nikolla, E., Schwank, J., Linic, S. (2007). Promotion of the long-term stability of reforming Ni catalysts by surface alloying. Journal of Catalysis, 250(1), 85–93. DOI: 10.1016/j.jcat.2007.04.020
  40. Nikolla, E., Schwank, J., Linic, S. (2009). Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts: The impact of the formation of Ni alloy on chemistry. Journal of Catalysis, 263(2), 220–227. DOI: 10.1016/j.jcat.2009.02.006
  41. Sitthisa, S., Resasco, D.E. (2011). Hydrodeoxygenation of furfural over supported metal catalysts: A comparative study of Cu, Pd and Ni. Catalysis Letters, 141(6), 784–791. DOI: 10.1007/s10562-011-0581-7
  42. Sitthisa, S., Pham, T., Prasomsri, T., Sooknoi, T., Mallinson, R.G., Resasco, D.E. (2011). Conversion of furfural and 2-methylpentanal on Pd/SiO2 and Pd-Cu/SiO2 catalysts. Journal of Catalysis, 280(1), 17–27. DOI: 10.1016/j
  43. Pino, N., Sitthisa, S., Tan, Q., Souza, T., López, D., Resasco, D.E. (2017). Structure, activity, and selectivity of bimetallic Pd-Fe/SiO2 and Pd-Fe/Γ-Al2O3 catalysts for the conversion of furfural. Journal of Catalysis, 350, 30–40. DOI: 10.1016/j.jcat.2017.03.016
  44. Maligal-Ganesh, R. v., Xiao, C., Goh, T.W., Wang, L.-L., Gustafson, J., Pei, Y., Qi, Z., Johnson, D.D., Zhang, S., Tao, F. (Feng), Huang, W. (2016). A Ship-in-a-Bottle Strategy To Synthesize Encapsulated Intermetallic Nanoparticle Catalysts: Exemplified for Furfural Hydrogenation. ACS Catalysis, 6(3), 1754–1763. DOI: 10.1021/acscatal.5b02281
  45. Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015). Catalytic hydrogenation of levulinic acid in water into γ-valerolactone over bulk structure of inexpensive intermetallic Ni-Sn alloy catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10(2), 192–200. DOI: 10.9767/bcrec.10.2.8284.192-200
  46. Komatsu, T., Onda, A. (2008). Catalytic properties of single-phase intermetallic compounds. Catalysis Surveys from Asia, 12(1), 6–15. DOI: 10.1007/s10563-007-9031-3
  47. Onda, A., Komatsu, T., Yashima, T. (2004). Characterizations and catalytic properties of fine particles of Ni-Sn intermetallic compounds supported on SiO2. Journal of Catalysis, 221(2), 378–385. DOI: 10.1016/j.jcat.2003.08.012
  48. Marinelli, T.B.L.W., Ponec, V. (1995). A Study on the Selectivity in Acrolein Hydrogenation on Platinum Catalysts: A Model for Hydrogenation of α,β-Unsaturated Aldehydes. Journal of Catalysis, 156(1), 51–59. DOI: 10.1006/jcat.1995.1230
  49. Studt, F., Abild-Pedersen, F., Bligaard, T., Sørensen, R.Z., Christensen, C.H., Nørskov, J.K. (2008). Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science, 320(5881), 1320–1322. DOI: 10.1126/science.1156660

Last update:

No citation recorded.

Last update:

No citation recorded.