skip to main content

Catalytic Photodegradation of Cyclic Sulfur Compounds in a Model Fuel Using a Bench-scale Falling-film Reactor Irradiated by a Visible Light

1Chemical Engineering Department, University of Technology, Baghdad, Iraq

2Department of Chemical and Oil Industries, Institute of Northern Technical University, Mosul, Iraq

3Department of Oil and Gas Refining Engineering, Al- Turath University College, Al-Mansour Quarter, Baghdad, Iraq

Received: 15 Sep 2022; Revised: 31 Oct 2022; Accepted: 3 Nov 2022; Available online: 8 Nov 2022; Published: 25 Dec 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

A homemade N doped-TiO2 nanoparticle were used to degrade dibenzothiophene (DBT) in a model fuel flowing on a bench-scale glass-made falling film reactor irradiated by a xenon lamp that emitted visible light. The photocatalyst was immobilized on the glass sheet. EDS, SEM, and FT-IR techniques were utilized to identify the morphology of the N doped-TiO2 nanoparticles. Different operating parameters (e.g., N loading (0, 4, 5, and 6 wt%), light intensity (20, 40, and 60 W/m2), and pH (4, 7, and 10)) were investigated for their effect on the DBT degradation.  The effect of the N loading on the wettability of the nano-TiO2 particles was also investigated. Experimental results revealed that the N loading did not affect the wettability characteristics of the nano TiO2 particles. Moreover, results showed that DBT conversion positively depends on N loading, light intensity (hv), and pH increase. The estimated optimal operating parameters were 5 wt% N loading, pH = 10, and hv = 40 W/m2 to ensure the best photo-oxidation efficiency of 91.4% after 120 min of operation. The outcomes of the present work confirmed the effective efficiency of the N-doped TiO2 nanoparticles irradiated by visible light for DBT degradation. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: dibenzothiophene; N-doped-TiO2; nanoparticles; wettability; photodegradation
Funding: University of Technology, Baghdad, Iraq

Article Metrics:

  1. Song, C. (2003). An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 86(1-4), 211-263.‏ DOI: 10.1016/S0920-5861(03)00412-7
  2. Yu, F., Liu, C., Yuan, B., Xie, P., Xie, C., Yu, S. (2016). Energy-efficient extractive desulfurization of gasoline by polyether-based ionic liquids. Fuel, 177, 39-45. DOI: 10.1016/j.fuel.2016.02.063
  3. Abd El-Aty, D.M., Sif El-Din, O.I., Hassan, S.I., Tawfik, S.M., Hanafi, S. (2009). Evaluation of some organic solvents for refining diesel fuel fraction. Petroleum Science and Technology, 27(9), 861-873. DOI: 10.1080/10916460802096279
  4. Abd El-Aty, D.M., Zaki, T., Tawfik, S.M., El-Dine, O.S., Hassan, S.I., Ahmed, S.H. (2016). Effect of the Synthesis Conditions on The Desulfurization Power of Mesoporous Alumina. Egyptian Journal of Chemistry, 59(3), 381-396. DOI: 10.21608/ejchem.2016.1088
  5. Lee, K.X., Valla, J.A. (2019). Adsorptive desulfurization of liquid hydrocarbons using zeolite-based sorbents: a comprehensive review. Reaction Chemistry & Engineering, 4(8), 1357-1386. DOI: 10.1039/C9RE00036D
  6. Hassan, S.I., El-Din, O.I.S., Tawfik, S.M., Abd El-Aty, D.M. (2013). Solvent extraction of oxidized diesel fuel: Phase equilibrium. Fuel Processing Technology, 106, 127-132. DOI: 10.1016/j.fuproc.2012.07.012
  7. Rezvani, M.A., Asli, M.A., Khandan, S., Mousavi, H., Aghbolagh, Z.S. (2017). Synthesis and characterization of new nanocomposite CTAB-PTA@ CS as an efficient heterogeneous catalyst for oxidative desulphurization of gasoline. Chemical Engineering Journal, 312, 243-251. DOI: 10.1016/j.cej.2016.11.137
  8. Lin, F., Jiang, Z., Tang, N., Zhang, C., Liu, T., Dong, B. (2016). Photocatalytic oxidation of thiophene on RuO2/SO42−TiO2: Insights for cocatalyst and solid-acid. Applied Catalysis B: Environmental, 188, 253-258. DOI: 10.1016/j.apcatb.2016.02.016
  9. Yun, L., Yang, Z., Yu, Z.B., Cai, T., Li, Y., Guo, C., Qi, C., Ren, T. (2017). Synthesis of four-angle star-like CoAl-MMO/BiVO 4 p–n heterojunction and its application in photocatalytic desulfurization. RSC advances, 7(41), 25455-25460. DOI: 10.1039/C7RA03012F
  10. Moctezuma, E., Leyva, E., Aguilar, C.A., Luna, R.A., Montalvo, C. (2012). Photocatalytic degradation of paracetamol: Intermediates and total reaction mechanism. Journal of Hazardous Materials, 243, 130-138. DOI: 10.1016/j.jhazmat.2012.10.010
  11. Zhou, R., Guzman, M.I. (2014). CO2 reduction under periodic illumination of ZnS. The Journal of Physical Chemistry C, 118(22), 11649-11656. DOI: 10.1021/jp4126039
  12. Zhang, F., Wang, X., Liu, H., Liu, C., Wan, Y., Long, Y., Cai, Z. (2019). Recent advances and applications of semiconductor photocatalytic technology. Applied Sciences, 9(12), 2489. DOI: 10.3390/app9122489
  13. Khedr, T.M., El-Sheikh, S.M., Hakki, A., Ismail, A.A., Badawy, W.A., Bahnemann, D.W. (2017). Highly active non-metals doped mixed-phase TiO2 for photocatalytic oxidation of ibuprofen under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 346, 530-540. DOI: 10.1016/j.jphotochem.2017.07.004
  14. Al‑Nuaim, M.A., Alwasiti, A.A., Shnain, Z.Y. (2022). The photocatalytic process in the treatment of polluted water. Chemical Papers, in press. DOI: 10.1007/s11696-022-02468-7
  15. Abid, M.F. (2015). Desulfurization of gas oil using a solar photocatalytic microreactor. Energy Procedia, 74, 663-678.‏ DOI: 10.1016/j.egypro.2015.07.802
  16. Shafiq, I., Hussain, M., Shafique, S., Rashid, R., Akhter, P., Ahmed, A., ... & Park, Y.K. (2021). Oxidative desulfurization of refinery diesel pool fractions using LaVO4 photocatalyst. Journal of Industrial and Engineering Chemistry, 98, 283-288. doi.org/10.1016/j.jiec.2021.03.040
  17. Shafiq, I., Hussain, M., Shehzad, N., Maafa, I.M., Akhter, P., Shafique, S., ARazzaq, A., Yang, W., Tahir, M., Russo, N. (2019). The effect of crystal facets and induced porosity on the performance of monoclinic BiVO4 for the enhanced visible-light driven photocatalytic abatement of methylene blue. Journal of Environmental Chemical Engineering, 7(4), 103265. DOI: 10.1016/j.jece.2019.103265
  18. Shnian, Z.Y., Abid, M.F., Sukkar, K.A. (2021). Photodegradation of mefenamic acid from wastewater in a continuous flow solar falling film reactor. Desalination and Water Treatment, 210, 22-30. DOI:
  19. 5004/dwt.2021.26581
  20. Gupta, S.M., Tripathi, M. (2011). A review of TiO2 nanoparticles. Chinese Science Bulletin, 56(16), 1639-1657.‏ DOI: 10.1007/s11434-011-4476-1
  21. Sahu, M., Biswas, P. (2011). Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor. Nanoscale Research Letters, 6(1), 441.‏ DOI: 10.1186/1556-276X-6-441
  22. Khalilian, H., Behpour, M., Atouf, V., Hosseini, S.N. (2015). Immobilization of S, N-codoped TiO2 nanoparticles on glass beads for photocatalytic degradation of methyl orange by fixed bed photoreactor under visible and sunlight irradiation. Solar Energy, 112, 239-245. DOI: 10.1016/j.solener.2014.12.007
  23. Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M. K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O'Shea, K., Entezari, M.H., Dionysiou, D.D. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125, 331-349.‏ DOI: 10.1016/j.apcatb.2012.05.036
  24. Raorane, D.V., Chavan, P.S., Pednekar, S.R., Chaughule, R.S. (2017). Green and rapid synthesis of copper-doped TiO2 nanoparticles with increased photocatalytic activity. Advances in Chemical Science, 6, 13-20.‏ DOI: 10.14355/sepacs.2017.06.002
  25. Khedr, T.M., El-Sheikh, S.M., Hakki, A., Ismail, A.A., Badawy, W.A., Bahnemann, D.W. (2017). Highly active non-metals doped mixed-phase TiO2 for photocatalytic oxidation of ibuprofen under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 346, 530-540. DOI: 10.1016/j.jphotochem.2017.07.004
  26. Barkul, R.P., Koli, V.B., Shewale, V.B., Patil, M.K., Delekar, S.D. (2016). Visible active nanocrystalline N-doped anatase TiO2 particles for photocatalytic mineralization studies. Materials Chemistry and Physics, 173, 42-51. DOI: 10.1016/j.matchemphys.2016.01.035
  27. Wassilkowska, A., Czaplicka-Kotas, A., Bielski, A., Zielina, M. (2014). An analysis of the elemental composition of micro-samples using EDS technique. Czasopismo Techniczne. Chemia, 111(1), 133-148. DOI: 10.4467/2353737XCT.14.283.3371
  28. Abid, M.F., Hamiedi, S.T., Ibrahim, S.I., Al-Nasri, S.K. (2018). Removal of toxic organic compounds from synthetic wastewater by a solar photocatalysis system. Desalination and Water Treatment, 105, 119-125.‏ DOI: 10.5004/dwt.2018.22017
  29. Fadhil, M. (2012). Hydrodynamic Characteristics Effect of Foam Control in a Three-Phase Fluidized Bed Column. Journal of Petroleum Research and Studies, 3(2).‏ E158-E185. DOI: 10.52716/jprs.v3i2.84
  30. Garlisi, C., Lai, C.Y., George, L., Chiesa, M., Palmisano, G. (2018). Relating photoelectrochemistry and wettability of sputtered Cu-and N-doped TiO2 thin films via an integrated approach. The Journal of Physical Chemistry C, 122(23), 12369-12376.‏ DOI: 10.1021/acs.jpcc.8b03650
  31. Sun, Z., Pichugin, V.F., Evdokimov, K.E., Konishchev, M.E., Syrtanov, M.S., Kudiiarov, V.N., Li, K., Tverdokhlebov, S.I. (2020). Effect of nitrogen-doping and post annealing on wettability and band gap energy of TiO2 thin film. Applied Surface Science, 500, 144048.‏ DOI: 10.1016/j.apsusc.2019.144048
  32. Faghihian, H., Naeemi, S. (2013). Application of a novel nanocomposite for desulfurization of a typical organo sulfur compound. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 32(3), 9-15. DOI: 10.30492/ijcce.2013.5737
  33. Kim, I. K. (2014). Degradation of a Refractory Organic Contaminant by Photocatalytic Systems. Journal of Power System Engineering, 18(6), 133-139.‏ DOI: 10.9726/kspse.2014.18.6.133
  34. Hüsken, G., Hunger, M., Brouwers, H.J.H. (2009). Experimental study of photocatalytic concrete products for air purification. Building and Environment, 44(12), 2463-2474.‏ DOI: 10.1016/j.buildenv.2009.04.010
  35. Al‑Nuaim, M.A., Alwasiti, A.A., Shnain, Z.Y., AL-Shalal, A.K. (2022). The Combined Effect of Bubble and Photo Catalysis Technology in BTEX Removal from Produced Water. Bulletin of Chemical Reaction Engineering & Catalysis, 17(3), 577-589. DOI: 10.9767/bcrec.17.3.15367.577-589
  36. Alwasiti, A.A., Shnain, Z.Y., Abid, M.F., Abdul Razak, A.A., Abdulhussein, B.A., Mahdi, G.S. (2021). Experimental and numerical study on the degradation of mefenamic acid in a synthetic wastewater. IOP Conference Series: Earth and Environmental Science, 779, 012073. DOI: 10.1088/1755-1315/779/1/012073
  37. Hüsken, G., Hunger, M., Brouwers, H.J.H. (2009). Experimental study of photocatalytic concrete products for air purification. Building and Environment, 44(12), 2463-2474.‏ DOI: 10.1016/j.buildenv.2009.04.010
  38. Jacoby, W.A., Blake, D.M., Noble, R.D., Koval, C.A. (1995). Kinetics of the oxidation of trichloroethylene in air via heterogeneous photocatalysis. Journal of Catalysis, 157(1), 87-96.‏ DOI: 10.1006/jcat.1995.1270
  39. Lim, T.H., Jeong, S.M., Kim, S.D., Gyenis, J. (2000). Photocatalytic decomposition of NO by TiO2 particles. Journal of Photochemistry and Photobiology A: Chemistry, 134(3), 209-217.‏ DOI: 10.1016/S1010-6030(00)00265-3
  40. Al-Jemeli, M., Mahmoud, M.A., Majdi, H.S., Abid, M.F., Abdullah, H.M., Abdul Razak, A.A. (2021). Degradation of Anti-Inflammatory Drugs in Synthetic Wastewater by Solar Photocatalysis. Catalysts, 11(11), 1330.‏ DOI: 10.3390/catal11111330
  41. Abid, M.F., Ebrahim, M., Nafi, O., Hussain, L., Maneual, N., Sameer, A. (2014). Designing and operating a pilot plant for purification of industrial wastewater from toxic organic compounds by utilizing solar energy. Korean Journal of Chemical Engineering, 31(7), 1194-1203. DOI: 10.1007/s11814-014-0052-0
  42. Kim, I.K. (2014). Degradation of a Refractory Organic Contaminant by Photocatalytic Systems. Journal of Power System Engineering, 18(6), 133-139. DOI: 10.9726/kspse.2014.18.6.133
  43. Kim, I.K., Huang, C.P., Chiu, P.C. (2001). Sonochemical decomposition of dibenzothiophene in aqueous solution. Water Research, 35(18), 4370-4378. DOI: 10.1016/S0043-1354(01)00176-2

Last update:

No citation recorded.

Last update:

No citation recorded.