skip to main content

Synthesis of NiFe2O4/SiO2/NiO Magnetic and Application for the Photocatalytic Degradation of Methyl Orange Dye under UV Irradiation

1Research Group on Magnetic Materials, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, Indonesia

2Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, Indonesia

3Doctoral Program of Environmental Science, Graduate School, Universitas Sriwijaya, Palembang 30139, Indonesia

Received: 6 Sep 2022; Revised: 30 Sep 2022; Accepted: 30 Sep 2022; Available online: 5 Oct 2022; Published: 25 Dec 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

NiFe2O4/SiO2/NiO magnetic was successfully synthesized using NiFe2O4, SiO2, and NiO as the core, interlayer, and shell, respectively. NiFe2O4/SiO2/NiO under UV light irradiation was used for photocatalytic degradation of methyl orange dye with different pH, catalyst dose, and initial dye concentration. This composite was characterized by X-ray Diffraction (XRD), Fourier Transform Infra-Red (FTIR), Scanning Electron Microscopy-Electron Dispersive X-ray Spectroscopy (SEM-EDs), Vibrating Sample Magnetometer (VSM), UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS), and Point of Zero Charge (pHpzc). The results showed that the composite is a superparamagnetic material with a saturation magnetization value of 44.13 emu/g. It also has a band gap of 2.67 eV with a pHpzc of 6.33. The optimum conditions for photocatalytic degradation were at pH of 4; 0.50 g/L catalyst dose, and 10 mg/L initial concentration. NiFe2O4/SiO2/NiO degradation efficiency to methyl orange dye was 95.76%. The photocatalytic degradation in different concentrations follows the pseudo-first-order, where the greater the concentration, the smaller the constant rate (k). After five cycles of repeated usage, NiFe2O4/SiO2/NiO has good catalytic performance as well as efficient and favourable of a recyclable photocatalyst. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: NiFe2O4/SiO2/NiO; magnetic; photocatalytic degradation; methyl orange
Funding: Ministry of Education, Culture, Research and Technology, Republic of Indonesia under contract Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT) No. 0063.01/UN9.3.1/PL/2022

Article Metrics:

  1. Gusmao, K.A.G., Gurgel, L.V.A., Melo, T.M.S., Gil, L.F. (2013). Adsorption Studies of Methylene Blue and Gentian Violet on Sugarcane Bagasse Modified with EDTA Dianhydride (EDTAD) in Aqueous Solutions: Kinetic and Equilibrium Aspects. Journal of Environmental Management, 118, 135-143. DOI: 10.1016/j.jenvman.2013.01.017
  2. Ali, N., Said, A., Ali, F., Razig, F., Ali, Z., Bilal, M, Reinert, L., Iqbal, H.M.N. (2020). Photocatalytic Degradation of Congo Red Dye from Aqueous Environment Using Cobalt Ferrite Nanostructures: Development, Characterization, and Photocatalytic Performance. Water, Air, & Soil Pollution, 231(50), 1-16. DOI: 10.1007/s11270-020-4410-8
  3. Iwuozor, K., Ighalo, J.O, Emenike, E.C., Ogunfowora, L.A., Igwegbe, C.A. (2021). Adsorption of Methyl Orange: A Review on Adsorbent Performance. Current Research in Green and Sustainable Chemistry, 4, 1-6. DOI: 10.1016/j.crgsc.2021.100179
  4. Makeswari, M., Saraswathi, P. (2020). Photocatalytic Degradation of Methylene Blue and Methyl Orange from Aqueous Solution using Solar Light onto Chitosan Bi‑metal Oxide Composite. SN Applied Science, 2(336), 1-12. DOI: 10.1007/s42452-020-1980-4
  5. Alghamdi, A.A., Al-Odayni, A., Saeed, W.S., Almutairi, M.S., Alharthi, F.A., Aouak, T., Al-Kahtani, A. (2019). Adsorption of Azo Dye Methyl Orange from Aqueous Solutions Using Alkali-Activated Polypyrrole-Based Graphene Oxide. Molecules, 24, 1-17. DOI: 10.3390/molecules24203685
  6. Chen, D., Chen, J., Luan, X., Ji, H., Xia, Z. (2011). Characterization of Anion–Cationic Surfactants Modified Montmorillonite and Its Application for the Removal of Methyl Orange. Chemical Engineering Journal, 171, 1150-1158. DOI: 10.1016/j.cej.2011.05.013
  7. Ajmal, A., Majeed, I., Malik, R.N., Idriss H., Nadeem, M.A. (2014). Principles and Mechanisms of Photocatalytic Dye Degradation on TiO2 Based Photocatalysts: a Comparative Overview. RSC Advances, 4, 37003-37026. DOI: 10.1039/C4RA06658H
  8. Fradj, A.B., Boubakri, A., Hafiane, A., Hamouda, S.B. (2020). Removal of Azoic Dyes from Aqueous Solutions by Chitosan Enhanced Ultrafiltration. Results in Chemistry, 2, 1-9. DOI: 10.1016/j.rechem.2019.100017
  9. Li, S., Zhao, Y., Chu, J., Li, W., Yu, H., Liu, G. (2013). Electrochemical Degradation of Methyl Orange on Pt–Bi/C Nanostructured Electrode by a Square-wave Potential Method. Electrochimica Acta, 92, 93-101. DOI: 10.1016/j.electacta.2013.01.012
  10. Igwegbe, C.A., Onukkwuli, O.D., Ighalo, J.O., Umembamalu, C.J. (2021), Electrocoagulation-flocculation of Aquaculture Effluent using Hybrid Iron and Aluminium Electrodes: A comparative Study. Chemical Engineering Journal Advances, 6,1-14. DOI: 10.1016/j.ceja.2021.100107
  11. Ali, M., Sarkar, A., Pandey, M.D., Pandey, S. (2006). Efficient Precipitation of Dyes from Dilute Aqueous Solutions of Ionic Liquids. Analytical Sciences, 22, 1051-1053. DOI: 10.2116/analsci.22.1051
  12. Huang, R., Zhang, Q., Yao, H., Lu, Z., Zhou, Q., Yan, D. (2021). Ion-Exchange Resins for Efficient Removal of Colorants in Bis(hydroxyethyl) Terephthalate. ACS Omega, 6(18), 12351-12360. DOI: 10.1021/acsomega.1c01477
  13. Hanif, M.K.H.M., Sapawe, N. (2020). A Short Review on Photocatalytic toward Dye Degradation. Materials Today, 31(1), A42-A47. DOI: 10.1016/j.matpr.2020.10.967
  14. Hassani, A., Krishnan, S., Scaria J., Eghbali, P., Nidheesh, P.V. (2021). Z-scheme Photocatalysts for Visible-light-driven Pollutants Degradation: A Review on Recent Advancements. Current Opinion in Solid State and Materials Science, 25(5), 1-25. DOI: 10.1016/j.cossms.2021.100941
  15. Solomon, R.V., Lydia, I.S., Merlin, J.P., Venuvanalingam, P. (2012). Enhanced Photocatalytic Degradation of Azo Dyes using Nano Fe3O4. Journal of the Iranian Chemical Society, 9, 101-109. DOI: 10.1007/s13738-011-0033-8
  16. Kitture, R., Koppikar, S.J., Kaul-Ghanekar, R., Kale, S.N. (2011). Catalyst Efficiency, Photostability and Reusability Study of ZnO Nanoparticles in Visible Light for Dye Degradation. Journal of Physics and Chemistry of Solids, 27(1), 60-66. DOI: 10.1016/j.jpcs.2010.10.090
  17. Lee, S.Y., Kang, D., Jeong, S., Do, H.T., Kim, J.H. (2020). Photocatalytic Degradation of Rhodamine B Dye by TiO2 and Gold Nanoparticles Supported on a Floating Porous Polydimethylsiloxane Sponge under Ultraviolet and Visible Light Irradiation. ACS Omega, 5(8), 4233-4241. 10.1021/acsomega.9b04127
  18. Khan, N.A., Saeed, K., Khan, I., Gul, T., Sadiq, M., Uddin, A., Zakker I. (2022). Efficient Photodegradation of Orange II Dye by Nickel Oxide Nanoparticles and Nanoclay Supported Nickel Oxide Nanocomposite. Applied Water Science, 12(131), 1-10. DOI: 10.1007/s13201-022-01647-x
  19. Isai, K.A., Shrivastava, V.S. (2019). Photocatalytic Degradation of Methylene Blue using ZnO and 2%Fe–ZnO Semiconductor Nanomaterials Synthesized by Sol–Gel Method: a Comparative Study. SN Applied Sciences, 1(1247), 1-11. DOI: 10.1007/s42452-019-1279-5
  20. Nazim, M., Khan, A.A.P., Asiri, A.M., Kim, J.H. (2021). Exploring Rapid Photocatalytic Degradation of Organic Pollutants with Porous CuO Nanosheets: Synthesis, Dye Removal, and Kinetic Studies at Room Temperature. ACS Omega, 6, 2601-2612. DOI: 10.1021/acsomega.0c04747
  21. Hunge, Y.M., Uchida, A., Tominaga, Y., Fujii, Y., Ydav, A.A., Kang, S., Suzuki, N., Shitanda, I., Kondo, T., Itagaki, M., Yuasa, M., Gosavi, S., Fujishima, A., Terashima, C. (2021). Visible Light-Assisted Photocatalysis Using Spherical-Shaped BiVO4 Photocatalyst. Catalysts, 11(4), 1-11. DOI: 10.3390/catal11040460
  22. Bordbar, M., Negahdar, N., Nasrollahzadeh, M. (2018). Melissa Officinalis L. Leaf Extract Assisted Green Synthesis of CuO/ZnO Nanocomposite for the Reduction of 4-nitrophenol and Rhodamine B. Separation and Purification Technology, 191, 295-300. DOI: 10.1016/j.jphotobiol.2018.03.016
  23. Kganyago, P., Mahlaule-Glory, L.M., Mathipa, M.M., Ntsendwana, B., Mketo, N., Mbita, Z., Hintsho-Mbita N.C. (2018). Synthesis of NiO Nanoparticles via a Green Route using Monsonia burkeana: The Physical and Biological Properties. Journal of Photochemistry and Photobiology B: Biology, 182, 18-26. DOI: 10.1016/j.jphotobiol.2018.03.016
  24. Motene, K., Mahlaule-Glory, L.M., Ngoepe, N.M., Mathipa, M.M., HintshoMbita, N.C. (2021). Photocatalytic Degradation of Dyes and Removal of Bacteria using Biosynthesised Flowerlike NiO Nanoparticles. International Journal of Environmental Analytical Chemistry, 2021, 1-17. DOI: 10.1080/03067319.2020.1869730
  25. Barzinjy, A.A., Hamad, S.M. Aydin, S., Ahmed, M.H., Hussain, F.H.S. (2020). Green and Eco‑friendly Synthesis of Nickel Oxide Nanoparticles and Its Photocatalytic Activity for Methyl Orange Degradation. Journal of Materials Science: Materials in Electronics, 31, 11303–11316. DOI: 10.1007/s10854-020-03679-y
  26. Moosavi, S., Li, R.Y.M., Lai, C.W., Yusof, Y., Gan, S., Akbarzadeh, O., Chowhurry, Z.Z., Yue, X., Johan, M.R. (2020). Methylene Blue Dye Photocatalytic Degradation over Synthesised Fe3O4/AC/TiO2 Nano-Catalyst: Degradation and Reusability Studies. Nanomaterials, 10(12), 1-15. DOI: 10.3390/nano10122360
  27. Rahimi, S.M., Panahi, A.H., Moghadam, N. S. M., Allahyari, E., Nasseh, N. (2022). Breaking Down of Low-biodegradation Acid Red 206 Dye using Bentonite/Fe3O4/ZnO Magnetic Nanocomposite as a Novel Photo-catalyst in Presence of UV light. Chemical Physics Letters, 794, 1-11. DOI: 10.1016/j.cplett.2022.139480
  28. Hassani, A., Faraji, M., Eghbali, P. (2020). Facile Fabrication of mpg-C3N4/Ag/ZnO Nanowires/Zn Photocatalyst Plates for Photodegradation of Dye Pollutant. Journal of Photochemistry and Photobiology A: Chemistry, 400, 1-15. DOI: 10.1016/j.jphotochem.2020.112665
  29. Madihi-Bidgoli, S., Asanezhad, S., Yaghoot-Nezhad, A., Hassani, A. (2021). Azurobine Degradation using Fe2O3@multi-walled Carbon Nanotube Activated Peroxymonosulfate (PMS) under UVA-LED Irradiation: Performance, Mechanism and Environmental Application. Journal of Environmental Chemical Engineering, 9(6), 2-11. DOI: 10.1016/j.jece.2021.106660
  30. Hirthna, Sendhilnathan, S., Rajan, P.I., Adinaveen, T. (2018). Synthesis and Characterization of NiFe2O4 Nanoparticles for the Enhancement of Direct Sunlight Photocatalytic Degradation of Methyl Orange. Journal of Superconductivity and Novel Magnetism, 31, 1-9. DOI: 10.1007/s10948-018-4601-3
  31. Ishino, K., Narumiya, Y. (1988). Development of Magnetic Ferrites: Control and Application of Loss. Ceramic Bulletin, 66, 1469-1475. DOI: 10.1002/CHIN.198820306
  32. Casbeer, E., Sharma, V.K., Li, X.Z. (2012). Synthesis and Photocatalytic Activity of Ferrites under Visible Light: A Review. Separation and Purification Technology, 87, 1-14. DOI: 10.1016/j.seppur.2011.11.034
  33. Shan, A.Y., Ghazi, T.I.M., Rashid, S.A. (2010). Immobilisation of Titanium Dioxide onto Supporting Materials in Heterogeneous Photocatalysis: a Review. Applied Catalysis A: General, 389 (1), 1-8. DOI: 10.1016/j.apcata.2010.08.053
  34. Teixera, S., Mora, H., Blasse L., Martins, P.M., Carabineiro, S.A.C., Lanceros-Mendez, S., Kuhn, K., Cuniberti, G. (2017). Photocatalytic Degradation of Recalcitrant Micropollutants by Reusable Fe3O4/SiO2/TiO2 Particles. Journal of Photochemistry and Photobiology A: Chemistry, 345, 27-35. DOI: 10.1016/j.jphotochem.2017.05.024
  35. Hariani P.L., Said M., Salni, Aprianti N. and Naibaho Y.A.L.R. (2022). High Efficient Photocatalytic Degradation of Methyl Orange Dye in an Aqueous Solution by CoFe2O4-SiO2-TiO2 Magnetic Catalyst. Journal of Ecological Engineering, 23, 118-128. DOI: 10.12911/22998993/143908
  36. Wang, L., Huang, Y., Sun, X., Huang, H., Liu, P., Zong, M., Wang, Y. (2014). Synthesis and Microwave Absorption Enhancement of Graphene@Fe3O4@SiO2@NiO Nanosheet Hierarchical Structures. Nanoscale, 6, 3157-3164. DOI: 10.1039/C3NR05313J
  37. Behzadi, S, Nonahal, B., Royaee, S.J., Asadi, A.A. (2020). TiO2/SiO2/Fe3O4 Magnetic Nanoparticles Synthesis and Application in Methyl Orange UV Photocatalytic Removal. Water Science Technology, 82 (11), 2432-2445. DOI: 10.2166/wst.2020.509
  38. Prasad, K.S., Shamshuddin, S.Z.M. (2022). Highly Efficient Conversion of Glycerol and t-Butanol to Biofuel Additives over AlPO Solid Acid Catalyst under Microwave Irradiation Technique: Kinetic Study. Comptes Rendus Chimie, 25, 149-170. DOI: 10.5802/crchim.132
  39. Chen, F., Yan, F., Chen, Q., Wang, Y., Han, L. (2014). Fabrication of Fe3O4@SiO2@TiO2 Nanoparticles Supported by Graphene Oxide Sheets for the Repeated Adsorption and Photocatalytic Degradation of Rhodamine B under UV Irradiation. Dalton Transaction, 43, 13537-13544. DOI: 10.1039/C4DT01702A
  40. Alzahrani, E. (2017). Photodegradation of Binary Azo Dyes Using Core-Shell Fe3O4/SiO2/TiO2 Nanospheres. American Journal of Analytical Chemistry, 8, 95-115. DOI: 10.4236/ajac.2017.81008
  41. Shi, M., Qiu, T., Tang, B., Zhang, G., Yao, R., Xu, W., Chen, J., Fu, X., Ning, H., Peng, J. (2021). Temperature-Controlled Crystal Size of Wide Band Gap Nickel Oxide and Its Application in Electrochomism. Micromachines, 12(80), 1-11. DOI: 10.3390/mi12010080
  42. Hariani P.L., Said M., Rachmat A., Riyanti F., Pratiwi H.C. Rizki W.T. (2021), Preparation of NiFe2O4 Nanoparticles by Solution Combustion Method as Photocatalyst of Congo red. Bulletin of Chemical Reaction Engineering & Catalysis, 16, 481-490. DOI: 10.9767/bcrec.16.3.10848.481-490
  43. Tan, J., Zhang, W., Xia, A. (2013). Facile Synthesis of Inverse Spinel NiFe2O4 Nanocrystals and Their Superparamagnetic Properties. Materials Research, 16, 237-241. DOI: 10.1590/S1516-143920120050000157
  44. Zielińska-Jurek A., Bielan Z., Dudziak S., Wolak I., Sobczak Z., Klimczuk T., Nowaczyk G., Hupka J. (2017). Design and Application of Magnetic Photocatalysts for Water Treatment. The Effect of Particle Charge on Surface FUnctionality. Catalysts, 7(360), 1-19. DOI: 10.3390/catal7120360
  45. Das, H., Inukai, A., Debnath, N., Kawaguchi, T., Sakamoto, N., Hoque, S.M., Aono, H., Shinazaki, K., Suzuki, H., Wakiya, N. (2018). Influence of Crystallite on the Magnetic and Heat Generation Properties of La0.77Sr0.23MnO3 Nanoparticles for Hyperthermia Applications. Journal of Physics and Chemistry of Solids, 112, 179-184. DOI: 10.1016/j.jpcs.2017.09.030
  46. Adeleke, J.T., Theivasanthi, T., Thiruppathi, M., Swaminathan, M., Akomolafe, T., Alabi, A.B. (2018). Photocatalytic Degradation of Methylene Blue by ZnO/NiFe2O4 Nanoparticles. Applied Surface Science, 455, 195-200. DOI: 10.1016/j.apsusc.2018.05.184
  47. Wu, L., Liu, X., Lv, G., Zhu, R., Tian, L., Liu, M., Li, Y., Rao, W., Liu, T. Liao L. (2021). Study on the Adsorption Properties of Methyl Orange by Natural One‑dimensional Nano‑mineral Materials with Diferent Structures. Scientific Report, 11, 1-11. DOI: 10.1038/s41598-021-90235-1
  48. Niu, P. (2013). Photocatalytic Degradation of Methyl Orange in Aqueous TiO2 Suspensions. Asian Journal of Chemistry, 25(2), 1103-1106. DOI: 10.14233/ajchem.2013.13539
  49. Wang, F., Li, M., Yu, L., Sun, F., Wang, Z., Zhang, L., Zeng, H., Xu, X. (2017). Corn-like, Recoverable γ-Fe2O3@SiO2@TiO2 Photocatalyst Induced by Magnetic Dipole Interactions. Scientific Reports, 7, 1-10. DOI: 10.1038/s41598-017-07417-z
  50. Alkaykh, S., Mbarek, A., Ali-Shattle, E.E. (2020). Photocatalytic Degradation of Methylene Blue Dye in Aqueous Solution by MnTiO3 Nanoparticles under Sunlight Irradiation. Heliyon, 6, 1-6. DOI: 10.1016/j.heliyon.2020.e03663
  51. Modirshahla, N., Behnajady, M.A., Rahbarfam, R., Hassani, A. (2012). Effects of Operational Parameters on Decolorization of C. I. Acid Red 88 by UV/H2O2 Process: Evaluation of Electrical Energy Consumption. Clean – Soil, Air, Water, 40(3), 298-302. DOI: 10.1002/clen.201000574
  52. Zhao, H., Zhang, G., Chong, S., Zhang, N., Liu, Y. (2015). MnO2/CeO2 for Catalytic Ultrasonic Decolorization of Methyl Orange: Process parameters and mechanisms. Ultrosonic Sonochemistry, 27, 474-479. DOI: 10.1016/j.ultsonch.2015.06.009
  53. Trablesi, H., Atheba, G.P., Hentati, O., Mariette, Y.D., Robert, D., Drogui, P., Ksibi, M. (2016). Solar Photocatalytic Decolorization and Degradation of Methyl Orange Using Supported TiO2. Journal of Advanced Oxidation Technologies, 19(1), 79-84. DOI: 10.1515/jaots-2016-0110
  54. Ammar, S.H., Elaibi, A.I., Mohamme, I.S. (2020). Core/shell Fe3O4@Al2O3-PMo Magnetic Nanocatalyst for Photocatalytic Degradation of Organic Pollutants in an Internal Loop Airlift Reactor. Journal of Water Process Engineering, 37, 1-11. DOI: 10.1016/j.jwpe.2020.101240
  55. Pourzad, A., Sobhi, H.R., Behbahani, M., Esrafili, A., Kalantary, R.R., Kermani, M. (2020). Efficient Visible Light-induced Photocatalytic Removal of Paraquat using N-doped TiO2@SiO2@Fe3O4 Nanocomposite. Journal of Molecular Liquids, 299, 1-7. DOI: 10.1016/j.molliq.2019.112167
  56. Li, Y., Li, X., Li, J., Yin, J. (2006). Photocatalytic Degradation of Methyl Orange by TiO2-coated Activated Carbon and Kinetic Study. Water Research, 40, 1119-1126. DOI: 10.1016/j.watres.2005.12.042
  57. Silva, da, C.G., Faria, J.L., (2003). Photochemical and Photocataytic Degradation of an Azo Dye in Aqueous Solution by UV Irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 155, 133-143. DOI: 10.1016/S1010-6030(02)00374-X

Last update:

No citation recorded.

Last update:

No citation recorded.