skip to main content

Catalytic Hydrothermal Liquefaction of Sugarcane Bagasse: Effect of Crystallization Time of Fe-MCM-41 and Process Parameters

Department of Chemical Engineering, Energy Cluster, School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun-248007, India

Received: 6 Sep 2022; Revised: 6 Nov 2022; Accepted: 7 Nov 2022; Available online: 9 Nov 2022; Published: 25 Dec 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Sugarcane is both food and energy crop providing sugar and energy products. Hydrothermal liquefaction (HTL) is gaining importance for the conversion of sugarcane bagasse to bio-oil, whose yield depends on the deoxygenation activity of the catalyst employed and process parameters. In this study, mesoporous Fe-MCM-41 catalysts were synthesized with crystallization time varied from 12 to 72 h, characterized by X-ray Diffraction (XRD), textural analysis, Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), and evaluated for the HTL of sugarcane bagasse. All the Fe-MCM-41 catalysts gave higher bio-oil yield with lower oxygen content compared to non-catalytic HTL, confirmed their deoxygenation activity. Among them, Fe-MCM-41 synthesized after 24 h of crystallization was found to have the highest crystallinity, and surface area thus gave the highest bio-oil yield of 56.2% containing the least amount of oxygen of 15.3 wt% at 250 °C, initial CO pressure of 45 bar, reaction time of 120 min, Water/Biomass weight ratio of 28, Catalyst/Biomass weight ratio of 0.4 and 0.2, respectively. Overall process of HTL of sugarcane bagasse was found to involve two consecutive equilibria, first conversion of lignocellulose of sugarcane bagasse by hydrolysis to water soluble organics (WSO) followed by its deoxygenation to bio-oil. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Sugarcane bagasse; Hydrothermal Liquefaction; Bio-oil; MCM-41; Thermochemical Conversion
Funding: Ministry of New and Renewable Energy, Government of India under contract Grant number F.No.7/184/2013-B F

Article Metrics:

  1. Nel, W.P., Cooper, C.J. (2009). Implications of fossil fuel constraints on economic growth and global warming. Energy Policy, 37(1), 166–180. DOI: 10.1016/j.enpol.2008.08.013
  2. Iyer, G.C., Edmonds, J.A., Fawcett, A.A., Hultman, N.E., Alsalam, J., Asrar, G.R., Calvin, K. V., Clarke, L.E., Creason, J., Jeong, M., Kyle, P., McFarland, J., Mundra, A., Patel, P., Shi, W., McJeon, H.C. (2015). The contribution of Paris to limit global warming to 2 °c. Environmental Research Letters, 10(12) 125002. DOI: 10.1088/1748-9326/10/12/125002
  3. Jeswani, H.K., Figueroa-Torres, G., Azapagic, A. (2021). The extent of food waste generation in the UK and its environmental impacts. Sustainable Production and Consumption, 26, 532–547. DOI: 10.1016/j.spc.2020.12.021
  4. Fulton, L.M., Lynd, L.R., Körner, A., Greene, N., Tonachel, L.R. (2015). The need for biofuels as part of a low carbon energy future. Biofuels, Bioproducts and Biorefining, 9(5), 476–483. DOI: https://doi.org/10.1002/bbb.1559
  5. Chandel, A.K., Garlapati, V.K., Jeevan Kumar, S.P., Hans, M., Singh, A.K., Kumar, S. (2020). The role of renewable chemicals and biofuels in building a bioeconomy. Biofuels, Bioproducts and Biorefining, 14(4), 830–844. DOI: 10.1002/bbb.2104
  6. Lynd, L.R., Liang, X., Biddy, M.J., Allee, A., Cai, H., Foust, T., Himmel, M.E., Laser, M.S., Wang, M., Wyman, C.E. (2017). Cellulosic ethanol: status and innovation. Current Opinion in Biotechnology, 45, 202–211. DOI: 10.1016/j.copbio.2017.03.008
  7. Zhou, C.H., Xia, X., Lin, C.X., Tong, D.S., Beltramini, J. (2011). Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chemical Society Reviews, 40(11), 5588–5617. DOI: 10.1039/c1cs15124j
  8. Bezerra, T.L., Ragauskas, A.J. (2016). A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels, Bioproducts and Biorefining, 10(5), 634–647. DOI: https://doi.org/10.1002/bbb.1662
  9. Gopal, A.R., Kammen, D.M. (2009). Molasses for ethanol: The economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol. Environmental Research Letters, 4(4), 044005. DOI: 10.1088/1748-9326/4/4/044005
  10. Nunes, L.J.R., Loureiro, L.M.E.F., Sá, L.C.R., Silva, H.F.C. (2020). Sugarcane industry waste recovery: A case study using thermochemical conversion technologies to increase sustainability. Applied Sciences (Switzerland), 10(18), 6481. DOI: 10.3390/APP10186481
  11. Toor, S.S., Rosendahl, L., Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328–2342. DOI: 10.1016/j.energy.2011.03.013
  12. Ariyawansha, T., Abeyrathna, D., Ahamed, T., Noguchi, R. (2020). Integrated bagasse utilization system based on hydrothermal liquefaction in sugarcane mills: theoretical approach compared with present practices. Biomass Conversion and Biorefinery, 12, 27–37. DOI: 10.1007/s13399-020-00958-w
  13. Ramirez, J.A., Rainey, T.J. (2019). Comparative techno-economic analysis of biofuel production through gasification, thermal liquefaction and pyrolysis of sugarcane bagasse. Journal of Cleaner Production, 229, 513–527. DOI: 10.1016/j.jclepro.2019.05.017
  14. Gollakota, A.R.K., Kishore, N., Gu, S. (2018). A review on hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, 81, 1378–1392. DOI: 10.1016/j.rser.2017.05.178
  15. Singh, R., Prakash, A., Balagurumurthy, B., Singh, R., Saran, S., Bhaskar, T. (2015). Hydrothermal liquefaction of agricultural and forest biomass residue: comparative study. Journal of Material Cycles and Waste Management, 17(3), 442–452. DOI: 10.1007/s10163-014-0277-3
  16. Long, J., Li, Y., Zhang, X., Tang, L., Song, C., Wang, F. (2016). Comparative investigation on hydrothermal and alkali catalytic liquefaction of bagasse: Process efficiency and product properties. Fuel, 186, 685–693. DOI: 10.1016/j.fuel.2016.09.016
  17. Yan, X., Ma, J., Wang, W., Zhao, Y., Zhou, J. (2018). The effect of different catalysts and process parameters on the chemical content of bio-oils from hydrothermal liquefaction of sugarcane bagasse. BioResources, 13(1), 997–1018. DOI: 10.15376/biores.13.1.997-1018
  18. Scarsella, M., de Caprariis, B., Damizia, M., De Filippis, P. (2020). Heterogeneous catalysts for hydrothermal liquefaction of lignocellulosic biomass: A review. Biomass and Bioenergy, 140, 105662. DOI: 10.1016/j.biombioe.2020.105662
  19. Govindasamy, G., Sharma, R., Subramanian, S. (2019). Studies on the effect of heterogeneous catalysts on the hydrothermal liquefaction of sugarcane bagasse to low-oxygen-containing bio-oil. Biofuels, 10(5), 665–675. DOI: 10.1080/17597269.2018.1433967
  20. Blin, J.L., Otjacques, C., Herrier, G., Su, B.L. (2001). Kinetic study of MCM-41 synthesis. International Journal of Inorganic Materials, 3(1), 75–86. DOI: 10.1016/S1466-6049(00)00043-X
  21. Atchudan, R., Pandurangan, A., Somanathan, T. (2009). Bimetallic mesoporous materials for high yield synthesis of carbon nanotubes by chemical vapour deposition techniques. Journal of Molecular Catalysis A: Chemical, 309(1–2), 146–152. DOI: 10.1016/j.molcata.2009.05.010
  22. Huo, Q., Margolese, D.I., Stucky, G.D. (1996). Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chemistry of Materials, 8(5), 1147–1160. DOI: 10.1021/cm960137h
  23. Szegedi, Á., Kónya, Z., Méhn, D. óra, Solymár, E., Pál-Borbély, G., Horváth, Z.E., Biró, L.P., Kiricsi, I. (2004). Spherical mesoporous MCM-41 materials containing transition metals: Synthesis and characterization. Applied Catalysis A: General, 272(1–2), 257–266. DOI: 10.1016/j.apcata.2004.05.057
  24. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. DOI: 10.1515/pac-2014-1117
  25. Kresge, C.T., Roth, W.J. (2013). The discovery of mesoporous molecular sieves from the twenty year perspective. Chemical Society Reviews, 42(9), 3663–3670. DOI: 10.1039/c3cs60016e
  26. Sing, K.S.W., Williams, R.T. (2004). Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorption Science and Technology, 22(10), 773–782. DOI: 10.1260/0263617053499032
  27. Cychosz, K.A., Guillet-Nicolas, R., García-Martínez, J., Thommes, M. (2017). Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chemical Society Reviews, 46(2), 389–414. DOI: 10.1039/c6cs00391e
  28. Rogalinski, T., Liu, K., Albrecht, T., Brunner, G. (2008). Hydrolysis kinetics of biopolymers in subcritical water. Journal of Supercritical Fluids, 46(3), 335–341. DOI: 10.1016/j.supflu.2007.09.037
  29. Mok, W.S.L., Antal, M.J. (1992). Uncatalyzed Solvolysis of Whole Biomass Hemicellulose by Hot Compressed Liquid Water. Industrial and Engineering Chemistry Research, 31(4), 1157–1161. DOI: 10.1021/ie00004a026
  30. Govindasamy, G., Sharma, R., Subramanian, S. (2020). Effect of composition of iron-cobalt oxide catalyst and process parameters on the hydrothermal liquefaction of sugarcane bagasse. Bulletin of Chemical Reaction Engineering & Catalysis, 15(1), 186–198. DOI: 10.9767/bcrec.15.1.5385.186-198
  31. Karagöz, S., Bhaskar, T., Muto, A., Sakata, Y. (2005). Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel, 84(7–8), 875–884. DOI: 10.1016/j.fuel.2005.01.004

Last update:

No citation recorded.

Last update:

No citation recorded.