skip to main content

Nickel Supported Parangtritis Beach Sand (PP) Catalyst for Hydrocracking of Palm and Malapari Oil into Biofuel

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia

Received: 25 Aug 2022; Revised: 22 Sep 2022; Accepted: 23 Sep 2022; Available online: 23 Sep 2022; Published: 30 Sep 2022.
Editor(s): Hadi Nur
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Nickel supported Parangtritis beach sand (PP) catalyst for hydrocracking of palm and malapari oil into biofuel has been conducted. The impregnation process of Nickel (Ni) metal on PP was carried out through the dry impregnation method (blending) using a precursor salt of NiCl2.6H2O with variations of Ni metal as much as 10 and 15 wt% of PP which produced Ni(A) and Ni(B) catalysts. Each catalyst was tested for activity and selectivity through the hydrocracking process of oil into biofuel using a semi-batch system reactor at a temperature of 450 oC, a hydrogen gas flow rate of 20 mL/minute for 2 hours, and a weight ratio of 1:200 catalyst:feed (w/w). The results showed that the Ni(A)/PP catalyst had the highest activity and selectivity with the yield of liquid products and the total biofuel fraction (biohydrocarbons) obtained from hydrocracking of palm oil of 68.50 and 49.87 wt%, respectively. Ni(A)/PP catalyst has a total acidity, surface area, and crystal size of 0.051 mmol/g, 4.44 m2/g, 25.86 nm, respectively. The reusability test of the Ni(A)/PP catalyst in the hydrocracking process of palm oil into biofuel after the third use resulted in a liquid product and the total biofuel fraction obtained was 64.20 and 41.46 wt%, respectively. The yield of liquid product and the total fraction of biofuel (biohydrocarbon) in hydrocracking malapari oil were 66.10, 47.83 wt%, respectively. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Parangtritis beach sand; Nickel; hydrocracking; vegetable oil
Funding: LPDP (Lembaga Pengelola Dana Pendidikan), Ministry of Finance, Republic of Indonesia under contract Indonesian Education Scholarship program.

Article Metrics:

  1. Talib, N.B., Triwahyono, S., Jalil, A.A., Mamat, C.R., Salamun, N., Fatah, N.A.A., Sidik, S.M., Teh, L.P. (2016). Utilization of a Cost Effective Lapindo Mud Catalyst Derived from Eruption Waste for Transesterification of Waste Oil. Journal of Energy Conversion and Management, 108, 411-421. DOI: 10.1016/j.enconman.2015.11.031
  2. Nanda, S., Rana, R., Hunter, H.N., Fang, Z., Dalai, A.K., Kozinski, J.A. (2019). Hydrothermal Catalytic Processing of Waste Cooking Oil for Hydrogen-Rich Syngas Production. Chemical Engineering Science, 195, 935-945. DOI: 10.1016/j.ces.2018.10.039
  3. Sentanuhady, J., Hasan, W.H., Muflikhun, M.A. (2022). Recent Progress on the Implementation of Renewable Biodiesel Fuel for Automotive and Power Plants: Raw Materials Perspective. Advances in Materials Science and Engineering, 2022, 19. DOI: 10.1155/2022/5452942
  4. Khowatimy, F.A., Priastomo, Y., Febriyanti, E., Riyantoko, H., Trisunaryanti, W. (2014). Study of Waste Lubricant Hydrocracking into Fuel Fraction over the Combination of Y-Zeolite and ZnO Catalyst. Procedia Environmental Sciences, 20, 225-234. DOI: 10.1016/j.proenv.2014.03.029
  5. Cao, X., Li, L., Shitao, Y., Liu, S., Hailong, Y., Qiong, W., Ragauskas, A.J. (2019). Catalytic Conversion of Waste Cooking Oils for the Production of Liquid Hydrocarbon Biofuels Using In-Situ Coating Metal Oxide on SBA-15 as Heterogeneous Catalyst. Journal of Analytical and Applied Pyrolysis, 138, 137-144. DOI: 10.1016/j.jaap.2018.12.017
  6. de Oliveira, K.G., de Lima, R.R., de Longe, C., Bicudo, T.D.C., Sales, R.V., de Carvalho, L.S. (2022). Sodium and Potassium Silicate-Based Catalysts Prepared Using Sand Silica Concerning Biodiesel Production from Waste Oil. Arabian Journal of Chemistry, 15, 103603. DOI: 10.1016/j.arabjc.2021.103603
  7. Alisha, G.D., Trisunaryanti, W., Syoufian, A. (2022). Hydrocracking of Waste Palm Cooking Oil into Hydrocarbon Compounds over Mo Catalyst Impregnated on SBA-15. Silicon, 14, 2309-2315. DOI: 10.1007/s12633-021-01035-1
  8. Chen, L., Hu, J., Qi, Z., Fang, Y., Richards, R. (2011). Gold Nanoparticles Intercalated into the Walls of Mesoporous Silica as a Versatile Redox Catalyst. Industrial & Engineering Chemistry Research, 50, 13642-13649. DOI: 10.1021/ie200606t
  9. Ghosh, B.K., Hazra, S., Naik, B., Ghosh, N.N. (2015). Preparation of Cu Nanoparticle Loaded SBA-15 and Their Excellent Catalytic Activity in Reduction of Variety of Dyes. Powder Technology, 269, 371-378. DOI: 10.1016/j.powder.2014.09.027
  10. Yiu, H.H.P., Brown, D.R. (1998). Lewis and Brønsted Acid Catalysis with AlMCM-41 and AlMMS: Dependence on Exchange Cation. Catalysis Letters, 56, 57-64. DOI: 10.1023/A:1019040508711
  11. Platon, A., Thomson, W.J. (2003). Quantitative Lewis/Brönsted Ratios Using Drifts. Industrial & Engineering Chemistry Research, 42, 5988-5992. DOI: 10.1021/ie030343g
  12. Naik, S.P., Chiang, A.S., Thompson, R.W. (2003). Synthesis of Zeolitic Mesoporous Materials by Dry Gel Conversion Under Controlled Humidity. The Journal of Physical Chemistry B, 107, 7006-7014. DOI: 10.1021/jp034425u
  13. Tanabe, K. (1981). Solid Acid and Base Catalyst in Catalysis Science and Technology. John R Anderson and Michael Boudart (eds) Vol. 2, Springer-Link Berlin, 231-273
  14. Alothman, Z.A. (2012). A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials, 5, 2874-2902. DOI: 10.3390/ma5122874
  15. Dong, H., Liu, Q. (2020). Three-Dimensional Networked Ni-Phyllosilicate Catalyst for CO2 Methanation: Achieving High Dispersion and Enhanced Stability at High Ni Loadings. ACS Sustainable Chemistry & Engineering, 8, 6753-6766. DOI: 10.1021/acssuschemeng.0c01148
  16. Ancheyta, J., Rana, M.S., Furimsky, E. (2005). Hydroprocessing of Heavy Petroleum Feeds: Tutorial. Catalysis Today, 109, 3-15. DOI: 10.1016/j.cattod.2005.08.025
  17. Tang, C., Li, J., Yao, X., Sun, J., Cao, Y., Zhang, L., Gao, F., Deng, Y., Dong, L. (2015). Mesoporous NiO–CeO2 Catalysts for CO Oxidation: Nickel Content Effect and Mechanism Aspect. Applied Catalysis A: General, 494, 77-86. DOI: 10.1016/j.apcata.2015.01.037
  18. Yang, Y., Ochoa-Hernández, C., Víctor, A., Pizarro, P., Coronado, J.M., Serrano, D.P. (2014). Effect of metal–support interaction on the selective hydrodeoxygenation of anisole to aromatics over Ni-based catalysts. Applied Catalysis B: Environmental, 145, 91-100. DOI: 10.1016/j.apcatb.2013.03.038
  19. Serrano, D.P., Sanz, R., Pizarro, P., Moreno, I., Shami, S. (2014). Narrowing the Mesopore Size Distribution in Hierarchical TS-1 Zeolite by Surfactant-Assisted Reorganization. Microporous and Mesoporous Materials, 189, 71-82. DOI: 10.1016/j.micromeso.2013.09.020
  20. Zhang, G., Sun, Y., Xu, Y., Zhang, R. (2018). Catalytic Performance of N-Doped Activated Carbon Supported Cobalt Catalyst for Carbon Dioxide Reforming of Methane to Synthesis Gas. Journal of the Taiwan Institute of Chemical Engineers, 93, 234-244. DOI: 10.1016/j.jtice.2018.07.016
  21. Hernando, H., Moreno, I., Fermoso, J., Ochoa-Hernández, C., Pizarro, P., Coronado, J.M., Čejka, J. and Serrano, D.P. (2017). Biomass Catalytic Fast Pyrolysis over Hierarchical ZSM-5 and Beta Zeolites Modified with Mg and Zn Oxides. Biomass Conversion and Biorefinery, 7, 289-304. DOI: 10.1007/s13399-017-0266-6
  22. Niemantsverdriet, J.W. (2007). Spectroscopy in catalysis: an introduction. John Wiley & Sons
  23. Santi, D., Trisunaryanti, W., Falah, I.I. (2020). Hydrocracking of Pyrolyzed α-Cellulose to Hydrocarbon over MxOy/Mesoporous Carbon Catalyst (M= Co and Mo): Synthesis and Characterization of Carbon-Based Catalyst Support from Saw Waste of Merbau Wood. Journal of Environmental Chemical Engineering, 8, 103735. DOI: 10.1016/j.jece.2020.103735
  24. Dong, W., Mansour, A.N., Dunn, B. (2001). Structural and Electrochemical Properties of Amorphous and Crystalline Molybdenum Oxide Aerogels. Solid State Ionics, 144, 31-40. DOI: 10.1016/S0167-2738(01)00901-8
  25. Dhar, G.M., Kumaran, G.M., Kumar, M., Rawat, K.S., Sharma, L.D., Raju, B.D., Rao, K.R. (2005). Physico-Chemical Characterization and Catalysis on SBA-15 Supported Molybdenum Hydrotreating Catalysts. Catalysis Today, 99, 309-314. DOI: 10.1016/j.cattod.2004.10.005
  26. Botas, J.A., Serrano, D.P., García, A., De Vicente, J., Ramos, R., 2012, Catalytic Conversion of Rapeseed Oil into Raw Chemicals and Fuels over Ni- and Mo-Modified Nanocrystalline ZSM-5 Zeolite. Catalysis Today, 195, 59-70. DOI: 10.1016/j.cattod.2012.04.061
  27. Millet, M.M., Algara-Siller, G., Wrabetz, S., Mazheika, A., Girgsdies, F., Teschner, D., Seitz, F., Tarasov, A., Levchenko, S.V., Schlögl, R., Frei, E. (2019). Ni Single Atom Catalysts for CO2 Activation. Journal of the American Chemical Society, 141, 2451-2461. DOI: 10.1021/jacs.8b11729
  28. Trisunaryanti, W., Larasati, S., Bahri, S., Ni’mah, Y.L., Efiyanti, L., Amri, K., Nuryanto, R., Sumbogo, S.D. (2020). Performance Comparison of Ni-Fe Loaded on NH2-Functionalized Mesoporous Silica and Beach Sand in the Hydrotreatment of Waste Palm Cooking Oil. Journal of Environmental Chemical Engineering, 8, 104477. DOI: 10.1016/j.jece.2020.104477
  29. Osgood, H., Devaguptapu, S.V., Xu, H., Cho, J., Wu, G. (2016). Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 11(5), 601-625. DOI: 10.1016/j.nantod.2016.09.001
  30. Istadi, I., Buchori, L., Anggoro, D.D., Riyanto, T., Indriana, A., Khotimah, C., Setiawan, F.A.P. (2019). Effects of ion exchange process on catalyst activity and plasma-assisted reactor toward cracking of palm oil into biofuels. Bulletin of Chemical Reaction Engineering & Catalysis, 14, 459-467. DOI: 10.9767/bcrec.14.2.4257.459-467
  31. Blakey, S., Rye, L., Wilson, C.W. (2011). Aviation Gas Turbine Alternative Fuels: A Review. Proceedings of The Combustion Institute, 33, 2863-2885. DOI: 10.1016/j.proci.2010.09.011
  32. Nugrahaningtyas, K.D., Lukitawati, R., Mukhsin, S.A., Fadlulloh, Z., Sabiilagusti, A.I., Budiman, A.W., Kurniawati, M.F. (2022, March). Conversion of waste cooking oil into green diesel using Ni/MOR and Cu/MOR catalysts. In Journal of Physics: Conference Series (Vol. 2190, No. 1, p. 012037). IOP Publishing
  33. Ameen, M., Azizan, M.T., Ramli, A., Yusup, S., Abdullah, B. (2020). The Effect of Metal Loading Over Ni/Γ-Al2O3 and Mo/Γ-Al2O3 Catalysts on Reaction Routes of Hydrodeoxygenation of Rubber Seed Oil for Green Diesel Production. Catalysis Today, 355, 51-64. DOI: 10.1016/j.cattod.2019.03.028
  34. Kusumastuti, H., Trisunaryanti, W., Falah, I.I., Marsuki, M.F. (2018). Synthesis of Mesoporous Silica-Alumina from Lapindo Mud as a Support of Ni and Mo Metals Catalysts for Hydrocracking of Pyrolyzed α-cellulose. Rasayan J. Chem., 11, 522-530. DOI: 10.31788/RJC.2018.1122061
  35. Zhao X, Wei L, Cheng S, Kadis E, Cao Y, Boakye E, Gu Z, Julson J (2016) Hydroprocessing of carinata oil for hydrocarbon biofuel over Mo-Zn/Al2O3. Applied Catalysis B: Environmental, 196, 41–49. DOI: 10.1016/j.apcatb.2016.05.020
  36. Absi-Halabi, M., Stanislaus, A., Trimm, D L. (1991). Coke formation on catalysts during the hydroprocessing of heavy oils. Applied Catalysis, 72, 193-215. DOI: 10.1016/0166-9834(91)85053-X

Last update:

No citation recorded.

Last update:

No citation recorded.