skip to main content

Phytochemical-assisted Synthesis of Titania Nanoparticles using Azadirachta indica Leaf Extract as Photocatalyst in the Photodegradation of Methyl Orange

1Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

3Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

Received: 18 Aug 2022; Revised: 25 Sep 2022; Accepted: 25 Sep 2022; Available online: 28 Sep 2022; Published: 25 Dec 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The biosynthesis procedure for nanomaterial preparation is a promising alternative due to its simplicity and environmental friendliness. In this work, TiO2 NPs were biosynthesized using the aqueous leaf extract of Azadirachta indica. The influence of the extract volumes, solvents, and acetic acid on the properties of TiO2 NPs was studied. Phytochemical screening and ATR-FTIR spectrum confirmed the presence of phenolic compounds in the leaf extract. XRD patterns showed that the samples were mainly in the anatase phase. However, for the water-based samples and when 1 and 2 mL of extract volumes were used, anatase/brookite mixture was observed. FESEM images displayed almost spherical and agglomerated NPs. UV-Vis-NIR studies showed that the samples’ bandgaps values are within the range of anatase TiO2. The photocatalytic activity of the TiO2 NPs was evaluated in the photodegradation of methyl orange (MO) under UV light irradiation. The water-based sample synthesized using 2 mL of the extract achieved 98.62% of MO degradation within 270 min and demonstrated the highest pseudo-first-order photodegradation kinetic constant of 0.0147 min-1. These results indicate that the use of the plant-based biosynthesis method with water as the solvent successfully produced TiO2 NPs with good physicochemical properties and photocatalytic activity in the photodegradation of organic dye. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Biosynthesis; titania nanoparticles; Azadirachta indica; photocatalytic activity; photodegradation
Funding: Ministry of Education (MOE) Malaysia under contract FRGS/1/2021/STG04/UTM/02/2; Universitas Negeri Malang under contract R.J130000.7354.4B686 PY/2021/00490

Article Metrics:

  1. Abu-Dalo, M., Jaradat, A., Albiss, B.A., Al-Rawashdeh, N.A.F. (2019). Green Synthesis of TiO2 NPs/pristine Pomegranate Peel Extract Nanocomposite and its Antimicrobial Activity for Water Disinfection. J. Environ. Chem. Eng. 7 (5), 103370. DOI: 10.1016/j.jece.2019.103370
  2. Al-Rawashdeh, N.A., El-Akhras, A.I., Abbo, M., Al-Mubarak, M.O. (2008). The Effect of Applied Potential on Plasmon Resonance Bands of Nanoscopic Silver Particles Adsorbed on Transparent Electrodes. Jordan J. Chem. 3 (1), 57-68
  3. Venkatasubbu, G.D., Baskar, R., Anusuya, T., Seshan, C.A., Chelliah, R. (2016). Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens. Colloids Surf. B. 148 600-606. DOI: 10.1016/j.colsurfb.2016.09.042
  4. Hasan, I.J., Ab Ghani, M.R., Gan, C.K. (2015). Optimum substation placement and feeder routing using ga-mst. Appl Mech Mater. 785, 9-13. DOI: 10.4028/www.scientific.net/AMM.785.9
  5. Ajmal, N., Saraswat, K., Bakht, M.A., Riadi, Y., Ahsan, M.J., Noushad, M. (2019). Cost-effective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit’s peel agro-waste extracts: Characterization, in vitro antibacterial, antioxidant activities. Green Chem. Lett. Rev. 12 (3), 244-254. DOI: 10.1080/17518253.2019.1629641
  6. Salata, O.V. (2004). Applications of nanoparticles in biology and medicine. J. Nanobiotechnology. 2 (1), 3. DOI: 10.1186/1477-3155-2-3
  7. Saif, S., Tahir, A., Chen, Y. (2016). Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials. 6 (11), 209. DOI: 10.3390/nano6110209
  8. Jemilugba, O.T., Sakho, E.H.M., Parani, S., Mavumengwana, V., Oluwafemi, O.S. (2019). Green synthesis of silver nanoparticles using combretum erythrophyllum leaves and its antibacterial activities. Colloids Interface Sci. Commun. 31, 100191. DOI: 10.1016/j.colcom.2019.100191
  9. Chatterjee, A., Nishanthini, D., Sandhiya, Abraham, J. (2016). Biosynthesis of titanium dioxide nanoparticles using vigna radiata. Asian J. Pharm. Clin. Res. 9 (4), 85-88
  10. Fakhari, S., Jamzad, M., and Kabiri Fard, H. (2019). Green synthesis of zinc oxide nanoparticles: A comparison. Green Chem. Lett. Rev. 12 (1), 19-24. DOI: 10.1080/17518253.2018.1547925
  11. Ravichandran, V., Sumitha, S., Ning, C.Y., Xian, O.Y., Kiew Yu, U., Paliwal, N., Shah, S.A.A., Tripathy, M. (2020). Durian waste mediated green synthesis of zinc oxide nanoparticles and evaluation of their antibacterial, antioxidant, cytotoxicity and photocatalytic activity. Green Chem. Lett. Rev. 13 (2), 102-116. DOI: 10.1080/17518253.2020.1738562
  12. Lv, L., Chen, H., Ho, C.T., Sang, S. (2011). Chemical components of the roots of noni (morinda citrifolia) and their cytotoxic effects. Fitoterapia. 82 (4), 704-708. DOI: 10.1016/j.fitote.2011.02.008
  13. Lim, S.-L., Goh, Y.-M., Noordin, M.M., Rahman, H.S., Othman, H.H., Abu Bakar, N.A., Mohamed, S. (2016). Morinda citrifolia edible leaf extract enhanced immune response against lung cancer. Food Funct. 7 (2), 741-751. DOI: 10.1039/C5FO01475A
  14. Khadar, A., Behara, D.K., Kumar, M.K. (2016). Synthesis and characterization of controlled size TiO2 nanoparticles via green route using aloe vera extract. Int. J. Sci. Res. 5 (1), 1913-1916
  15. Rufai, Y., Chandren, S., Basar, N. (2020). Influence of solvents' polarity on the physicochemical properties and photocatalytic activity of titania synthesized using deinbollia Pinnata leaves. Front Chem. 8, 597980. DOI: 10.3389/fchem.2020.597980
  16. Nadeem, M., Tungmunnithum, D., Hano, C., Abbasi, B.H., Hashmi, S.S., Ahmad, W., Zahir, A. (2018). The current trends in the green syntheses of titanium oxide nanoparticles and their applications. Green Chem. Lett. Rev. 11 (4), 492-502. DOI: 10.1080/17518253.2018.1538430
  17. Singh, J., Dutta, T., Kim, K.-H., Rawat, M., Samddar, P., Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology. 16 (1), 84. DOI: 10.1186/s12951-018-0408-4
  18. Anbalagan, K., Mohanraj, S., Pugalenthi, V. (2015). Rapid phytosynthesis of nano-sized titanium using leaf extract of azadirachta indica. Int. J. Chemtech. Res. 8 (4), 2047-2052
  19. Verma, V., Al-Dossari, M., Singh, J., Rawat, M., Kordy, M.G.M., Shaban, M. (2022). A review on green synthesis of TiO2 NPs: Photocatalysis and antimicrobial applications. Polymers. 14 (7), 1444. DOI: 10.3390/polym14071444
  20. Tasbihi, M., Călin, I., Šuligoj, A., Fanetti, M., Lavrenčič Štangar, U. (2017). Photocatalytic degradation of gaseous toluene by using TiO2 nanoparticles immobilized on fiberglass cloth. J. Photochem. Photobiol. A. 336, 89-97. DOI: 10.1016/j.jphotochem.2016.12.025
  21. Mahshid, S., Askari, M., Ghamsari, M.S. (2007). Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J. Mater. Process. Technol. 189 (1), 296-300. DOI: 10.1016/j.jmatprotec.2007.01.040
  22. Zhang, B., Asakura, H., Zhang, J., Zhang, J., De, S., Yan, N. (2016). Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem. Int. Ed. 55 (29), 8319-8323. DOI: 10.1002/anie.201602801
  23. Garimella, R., Eltorai, A.E.M. (2017). Nanotechnology in Orthopedics. J. Orthop. 14 (1), 30-33. DOI: 10.1016/j.jor.2016.10.026
  24. Jafari, S., Mahyad, B., Hashemzadeh, H., Janfaza, S., Gholikhani, T., Tayebi, L. (2020). Biomedical applications of TiO2 nanostructures: Recent advances. Int. J. Nanomedicine. 15, 3447-3470. DOI: 10.2147/ijn.S249441
  25. Singh, R., Dutta, S. (2018). A Review on H2 Production through Photocatalytic Reactions using TiO2/TiO2-assisted Catalysts. Fuel. 220 607-620. DOI: 10.1016/j.fuel.2018.02.068
  26. Kumar, S., Muruganandham, T., Jaabir, M. (2014). Original research article decolourization of azo dyes in a two-stage process using novel isolate and advanced oxidation with hydrogen peroxide / hrp system. 3. Int. J. Curr. Microbiol. Appl. Sci. 3(1), 514-522
  27. Khehra, M.S., Saini, H.S., Sharma, D.K., Chadha, B.S., Chimni, S.S. (2005). Decolorization of various azo dyes by bacterial consortium. Dyes Pigm. 67 (1), 55-61. DOI: 10.1016/j.dyepig.2004.10.008
  28. Herrmann, J.M., Duchamp, C., Karkmaz, M., Hoai, B.T., Lachheb, H., Puzenat, E., Guillard, C. (2007). Environmental green chemistry as defined by photocatalysis. J. Hazard. Mater. 146 (3), 624-629. DOI: 10.1016/j.jhazmat.2007.04.095
  29. Zhang, F., Wang, X., Liu, H., Liu, C., Wan, Y., Long, Y., Cai, Z. (2019). Recent advances and applications of semiconductor photocatalytic technology. Appl. Sci. 9 (12), DOI: 10.3390/app9122489
  30. Nabi, G., Raza, W., Tahir, M.B. (2020). Green synthesis of TiO2 nanoparticle using cinnamon powder extract and the study of optical properties. J. Inorg. Organomet. Polym. 30 (4), 1425-1429. DOI: 10.1007/s10904-019-01248-3
  31. Subhapriya, S., Gomathipriya, P. (2018). Green synthesis of titanium dioxide (TiO2) nanoparticles by trigonella foenum-graecum extract and its antimicrobial properties. Microb. Pathog. 116, 215-220. DOI: 10.1016/j.micpath.2018.01.027
  32. Kaur, H., Kaur, S., Singh, J., Rawat, M., Kumar, S. (2019). Expanding horizon: Green synthesis of TiO2 nanoparticles using carica Papaya Leaves for photocatalysis application. Mater. Res. Express. 6 (9), 095-034. DOI: 10.1088/2053-1591/ab2ec5
  33. Abisharani, J.M., Devikala, S., Kumar, R.D., Arthanareeswari, M., Kamaraj, P. (2019). Green synthesis of TiO2 nanoparticles using cucurbita pepo seeds extract. Mater. Today: Proceedings. 14, 302-307. DOI: 10.1016/j.matpr.2019.04.151
  34. Senthilkumar, S., Rajendran, A. (2018). Biosynthesis of TiO2 nanoparticles using justicia Gendarussa leaves for photocatalytic and toxicity studies. Res. Chem. Intermed. 44 (10), 5923-5940. DOI: 10.1007/s11164-018-3464-3
  35. Pakseresht, S., Cetinkaya, T., Al-Ogaili, A.W.M., Halebi, M., Akbulut, H. (2021). Biologically synthesized TiO2 nanoparticles and their application as lithium-air battery cathodes. Ceram. Int. 47 (3), 3994-4005. DOI: 10.1016/j.ceramint.2020.09.264
  36. Arabi, N., Kianvash, A., Hajalilou, A., Abouzari-Lotf, E., Abbasi-Chianeh, V. (2020). A facile and green synthetic approach toward fabrication of alcea- and thyme-stabilized TiO2 nanoparticles for photocatalytic applications. Arab. J. Chem. 13 (1), 2132-2141. DOI: 10.1016/j.arabjc.2018.03.014
  37. Hiremath, S., Antony Raj, M.A.L., Chandra Prabha, M.N., C., Vidya, C. (2018). Tamarindus indica mediated biosynthesis of nano TiO2 and its application in photocatalytic degradation of titan yellow. J. Environ. Chem. Eng. 6 (6), 7338-7346. DOI: 10.1016/j.jece.2018.08.052
  38. Sun, Y., Wang, S., Zheng, J. (2019). Biosynthesis of TiO2 nanoparticles and their application for treatment of brain injury-an in-vitro toxicity study towards central nervous system. J. Photochem. Photobiol. B Biol. 194, 1-5. DOI: 10.1016/j.jphotobiol.2019.02.008
  39. Elumalai, K., Velmurugan, S. (2015). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of azadirachta indica (l.). Appl. Surf. Sci. 345, 329-336. DOI: 10.1016/j.apsusc.2015.03.176
  40. Sohail, M.F., Rehman, M., Hussain, S.Z., Huma, Z.-e., Shahnaz, G., Qureshi, O.S., Khalid, Q., Mirza, S., Hussain, I., Webster, T.J. (2020). Green synthesis of zinc oxide nanoparticles by neem extract as multi-facet therapeutic agents. J. Drug Deliv. Sci. Technol. 59, 101911. DOI: 10.1016/j.jddst.2020.101911
  41. Kumar, V.S., Navaratnam, V. (2013). Neem (azadirachta indica): Prehistory to contemporary medicinal uses to humankind. Asian Pac J. Trop. Biomed. 3 (7), 505-514. DOI: 10.1016/s2221-1691(13)60105-7
  42. Alzohairy, M.A. (2016). Therapeutics role of azadirachta indica (neem) and their active constituents in diseases prevention and treatment. Evid. Based Complementary Altern. Med. 2016, 11. DOI: 10.1155/2016/7382506
  43. Islas, J.F., Acosta, E., G-Buentello, Z., Delgado-Gallegos, J.L., Moreno-Treviño, M.G., Escalante, B., Moreno-Cuevas, J.E. (2020). An overview of neem (azadirachta indica) and its potential impact on health. J. Funct. Foods. 74, 104171. DOI: 10.1016/j.jff.2020.104171
  44. Dubey, R.C., Kumar, H., Pandey, R. (2009). Fungitoxic effect of neem extracts on growth and sclerotial survival of macrophomina phaseolina in vitro. Am. J. Sci., 5, 17-24. DOI: 10.7537/marsjas050509.03
  45. Singh, A., Neelam., Kaushik, M. (2019). Physicochemical investigations of zinc oxide nanoparticles synthesized from azadirachta indica (neem) leaf extract and their interaction with calf-thymus DNA. Results Phys. 13, DOI: 10.1016/j.rinp.2019.102168
  46. Mankad, M., Patil, G., Patel, D., Patel, P., Patel, A. (2020). Comparative studies of sunlight mediated green synthesis of silver nanoparaticles from azadirachta indica leaf extract and its antibacterial effect on xanthomonas oryzae pv. Oryzae. Arab. J. Chem. 13 (1), 2865-2872. DOI: 10.1016/j.arabjc.2018.07.016
  47. Thakur, B.K., Kumar, A., Kumar, D. (2019). Green synthesis of titanium dioxide nanoparticles using azadirachta indica leaf extract and evaluation of their antibacterial activity. S. Afr. J. Bot. 124, 223-227. DOI: 10.1016/j.sajb.2019.05.024
  48. Vimalkumar, C., Hosagaudar, V., Suja, S., Vilash, V., Krishnakumar, N., Latha, P. (2014). Comparative preliminary phytochemical analysis of ethanolic extracts of leaves of olea dioica roxb., infected with the rust fungus zaghouania oleae (ej butler) cummins and non-infected plants. J. Pharmacogn. Phytochem. 3 (4)
  49. Bouasla, I., Hamel, T., Barour, C., Bouasla, A., Hachouf, M., Bouguerra, O.M., Messarah, M. (2021). Evaluation of solvent influence on phytochemical content and antioxidant activities of two algerian endemic taxa: Stachys marrubiifolia viv. and lamium flexuosum ten. (lamiaceae). Eur. J. Integr. Med. 42, 101267. DOI: 10.1016/j.eujim.2020.101267
  50. Herborne, J. (1973). Phytochemical methods. A guide to modern techniques of plant analysis. 2 5-11. DOI: 10.1007/978-94-009-5921-7
  51. Dash, L., Biswas, R., Ghosh, R., Kaur, V., Banerjee, B., Sen, T., Patil, R.A., Ma, Y.-R., Haldar, K.K. (2020). Fabrication of mesoporous titanium dioxide using azadirachta indica leaves extract towards visible-light-driven photocatalytic dye degradation. J. Photochem. Photobiol. A. 400, 112682. DOI: 10.1016/j.jphotochem.2020.112682
  52. Sarah, R., Tabassum, B., Idrees, N., Hussain, M. (2019) Bioactive compounds isolated from neem tree and their applications. In M. S. Akhtar, M. K. Swamy, & U. R. Sinniah (Eds.), Natural Bio-active Compounds: Production and Applications (pp. 509-528). Singapore: Springer Singapore. DOI: 10.1007/978-981-13-7154-7_17
  53. Aslam, M., Abdullah, A.Z., Rafatullah, M. (2021). Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. J.. Ind. Eng. Chem. 98, 1-16. DOI: 10.1016/j.jiec.2021.04.010
  54. Al-Shabib, N.A., Husain, F.M., Qais, F.A., Ahmad, N., Khan, A., Alyousef, A.A., Arshad, M., Noor, S., Khan, J.M., Alam, P., Albalawi, T.H., Shahzad, S.A. (2020). Phyto-mediated synthesis of porous titanium dioxide nanoparticles from withania somnifera root extract: Broad-spectrum attenuation of biofilm and cytotoxic properties against hepg2 cell lines. Front Microbiol. 11, 1680. DOI: 10.3389/fmicb.2020.01680
  55. Sankar, R., Dhivya, R., Shivashangari, K.S., Ravikumar, V. (2014). Wound healing activity of origanum vulgare engineered titanium dioxide nanoparticles in wistar albino rats. J. Mater. Sci. Mater. Med. 25 (7), 1701-1708. DOI: 10.1007/s10856-014-5193-5
  56. Wang, X., Sø, L., Su, R., Wendt, S., Hald, P., Mamakhel, A., Yang, C., Huang, Y., Iversen, B.B., Besenbacher, F. (2014). The influence of crystallite size and crystallinity of anatase nanoparticles on the photodegradation of phenol. J. Catal. 310, 100-108. DOI: 10.1016/j.jcat.2013.04.022
  57. Chalastara, K., Guo, F., Elouatik, S., Demopoulos, G.P. (2020). Tunable composition aqueous-synthesized mixed-phase TiO2 nanocrystals for photo-assisted water decontamination: Comparison of anatase, brookite and rutile photocatalysts. Catalysts. 10 (4), 407. DOI: 10.3390/catal10040407
  58. Zhang, X., Ge, X., Wang, C. (2009). Synthesis of titania in ethanol/acetic acid mixture solvents: Phase and morphology variations. Cryst. Growth Des. 9 (10), 4301-4307. DOI: 10.1021/cg801015b
  59. Hald, P., Becker, J., Bremholm, M., Pedersen, J.S., Chevallier, J., Iversen, S.B., Iversen, B.B. (2006). Supercritical propanol–water synthesis and comprehensive size characterisation of highly crystalline anatase TiO2 nanoparticles. J. Solid State Chem. 179 (8), 2674-2680. DOI: 10.1016/j.jssc.2006.05.012
  60. Henderson, M.A. (2011). A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66 (6), 185-297. DOI: 10.1016/j.surfrep.2011.01.001
  61. Hussain, M.H., Abu Bakar, N.F., Mustapa, A.N., Low, K.F., Othman, N.H., Adam, F. (2020). Synthesis of various size gold nanoparticles by chemical reduction method with different solvent polarity. Nanoscale Res. Lett. 15 (1), 140. DOI: 10.1186/s11671-020-03370-5
  62. Liu, J., Liang, C., Zhu, X., Lin, Y., Zhang, H., Wu, S. (2016). Understanding the solvent molecules induced spontaneous growth of uncapped tellurium nanoparticles. Sci. Rep. 6 (1), 32631. DOI: 10.1038/srep32631
  63. Tilaki, R.M., Zad, A.I., Mahdavi, S.M. (2007). The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation. J. Nanopart. Res. 9 (5), 853-860. DOI: 10.1007/s11051-006-9143-0
  64. Banerjee, I.A., Yu, L., Matsui, H. (2003). Cu nanocrystal growth on peptide nanotubes by biomineralization: Size control of cu nanocrystals by tuning peptide conformation. Proc. Natl. Acad. Sci. U.S.A. 100 (25), 14678-82. DOI: 10.1073/pnas.2433456100
  65. Kumar, P.M., Badrinarayanan, S., Sastry, M. (2000). Nanocrystalline TiO2 studied by optical, ftir and x-ray photoelectron spectroscopy: Correlation to presence of surface states. Thin Solid Films. 358 (1), 122-130. DOI: 10.1016/S0040-6090(99)00722-1
  66. Zhao, H., Liu, L., Andino, J.M., Li, Y. (2013). Bicrystalline TiO2 with controllable anatase–brookite phase content for enhanced co2 photoreduction to fuels. J. Mater. Chem. A. 1 (28), 8209-8216. DOI: 10.1039/C3TA11226H
  67. Phromma, S., Wutikhun, T., Kasamechonchung, P., Eksangsri, T., Sapcharoenkun, C. (2020). Effect of calcination temperature on photocatalytic activity of synthesized TiO2 nanoparticles via wet ball milling sol-gel method. Appl. Sci. 10 (3), 993. DOI: 10.3390/app10030993
  68. Hidalgo, M.C., Aguilar, M., Maicu, M., Navío, J.A., Colón, G. (2007). Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catal. Today. 129 (1), 50-58. DOI: 10.1016/j.cattod.2007.06.053
  69. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (iupac technical report). Pure Appl. Chem. 87 (9-10), 1051-1069. DOI: 10.1515/pac-2014-1117
  70. Al-Othman, Z.A. (2012). A review: Fundamental aspects of silicate mesoporous materials. Materials. 5 (12), 2874-2902. DOI: 10.3390/ma5122874
  71. Mahmoud, H.A., Narasimharao, K., Ali, T.T., Khalil, K.M.S. (2018). Acidic peptizing agent effect on anatase-rutile ratio and photocatalytic performance of TiO2 nanoparticles. Nanoscale Res. Lett. 13 (1), 48. DOI: 10.1186/s11671-018-2465-x
  72. Nguyen, T., Hwang, M.J., Lee, S.-S., Choe, D.-E., Ryu, K.S. (2010). Characterization of TiO2 synthesized in acidic conditions at low temperature by sol-gel method. J. Korean Inst. Met. Mater. 17, 409-414. DOI: 10.4150/KPMI.2010.17.5.409
  73. Kim, D.S., Kwak, S.-Y. (2007). The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Appl. Catal. A: Gen. 323, 110-118. DOI: 10.1016/j.apcata.2007.02.010
  74. Li, W., Wu, Z., Wang, J., Elzatahry, A.A., Zhao, D. (2014). A perspective on mesoporous TiO2 materials. Chem. Mater. 26 (1), 287-298. DOI: 10.1021/cm4014859
  75. Azeez, F., Al-Hetlani, E., Arafa, M., Abdelmonem, Y., Nazeer, A.A., Amin, M.O., Madkour, M. (2018). The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. 8 (1), 7104. DOI: 10.1038/s41598-018-25673-5

Last update:

No citation recorded.

Last update:

No citation recorded.