skip to main content

Synthesis of ZnO-Fe3O4 Magnetic Nanocomposites through Sonochemical Methods for Methylene Blue Degradation

1Department of Chemistry Education, Faculty of Tarbiya and Teaching Sciences, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Ciputat, Tangerang Selatan 15412, Indonesia

2Department of Chemistry, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Ciputat, Tangerang Selatan 1541, Indonesia

3Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Jl. Lingkar Kampus Raya, Pondok Cina, Beji, Depok, Jawa Barat 16424, Indonesia

4 Department of Public Health, Faculty of Health Science, UIN Syarif Hidayatullah Jakarta, Jl. Kertamukti No. 5 Ciputat, South Tangerang, Banten 15412, Indonesia

5 Integrated Laboratory Centre, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Jl. Ir. H. Juanda No. 95, Ciputat, South Tangerang 15412, Indonesia

View all affiliations
Received: 13 Aug 2022; Revised: 15 Sep 2022; Accepted: 15 Sep 2022; Available online: 18 Sep 2022; Published: 30 Sep 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Textile industry waste can pollute the aquatic environment because it contains dye contaminants with very stable properties that are difficult to degrade naturally. However, dye contaminants degradation can be carried out by photodegradation using ZnO-Fe3O4 magnetic nanocomposite photocatalysts. This study aims to synthesize ZnO-Fe3O4 magnetic nanocomposite through a sonochemical method. Then measure their photocatalytic activity in methylene blue degradation. The best ZnO-Fe3O4 magnetic nanocomposite is made of ZnO:Fe3O4 mass ratio of 4:1 with a crystal size of 31.058 nm, a hexagonal crystal phase and a particle size of 173.23 nm. The ZnO-Fe3O4 magnetic nanocomposites (4:1) provides optimum degradation capacity of methylene blue under halogen lamp irradiation of 99.56 mg/g at pH 13. Furthermore, the ZnO-Fe3O4 magnetic nanocomposites had good stability in 10 cycles reaction with a degradation capacity of 99.24-99.75 mg/g. The photocatalytic degradation of methylene blue by ZnO-Fe3O4 occurs through the formation of free radical species with hydroxyl radicals as the dominant species that play an important role in the degradation process. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: ZnO-Fe3O4; magnetic nanocomposite; degradation; photocatalysts; methylene blue
Funding: UIN Syarif Hidayatullah Jakarta under contract B-304/LP2M-PUSLITPEN/TL.03/2022

Article Metrics:

  1. Gürses, A., Hassani, A., Kranşan, M., Açşl, Ö., Karaca, S. (2014). Removal of methylene blue from aqueous solution using by untreated lignite as potential low-cost adsorbent: kinetic, thermodynamic and equilibrium approach. Journal of Water Process Engineering, 2(1), 10–21. DOI: 10.1016/j.jwpe.2014.03.002
  2. Choi, H.J., Yu, S.W. (2019). Biosorption of methylene blue from aqueous solution by agricultural bioadsorbent corncob. Environmental Engineering Research, 24(1), 99–106. DOI: 10.4491/eer.2018.107
  3. Sakti, R.B., Subagio, A., Susanto, H. (2013). Synthesis of thin layers of TiO2/CNT nanocomposites using sol-gel method and their application to photodegradation of dyestuffs azo orange 3R. Youngster Physics Journal, 2(2), 41–48
  4. Sistesya, D., Sutanto, H. (2013). Optical properties of ZnO:Ag coatings deposited over glass substrates using the chemical deposition (CSD) method and their application to the degradation of methylene blue dyestuffs. Youngster Physics Journal, 1(4), 71–80
  5. Ivanova, T., Harizanova, A., Koutzarova, T., Vertruyen, B. (2011). Preparation and characterization of ZnO-TiO2 films obtained by sol-gel method. Journal of Non-Crystalline Solids, 357(15), 2840–2845. DOI: 10.1016/j.jnoncrysol.2011.03.019
  6. Pant, H.M., Bishweshwar, P., Ram, K.S., Amarjagal, A., Kim, H.J., Chan, Park, C.H., Tijing, L.D., Kim, C.S. (2013). Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process. Ceramics International, 39 (2), 1503–1510. DOI: 10.1016/j.ceramint.2012.07.097
  7. Xu, L., Zheng, G., Wu, H., Wang, J., Gu, F., Su, J., Xian, F., Liu, Z. (2013). Strong ultraviolet and violet emissions from ZnO/TiO2 multilayer thin films. Optical Materials, 35, 1582–1586. DOI: 10.1016/j.optmat.2013.04.001
  8. Raganata, T.C., Aritonang, H., Suryanto, E. (2019). Photocatalyst synthesis of ZnO nanoparticles to degrade methlene blue dyestuffs. Chem Prog, 12(2), 55–58. DOI: 10.35799/cp.12.2.2019.27923
  9. Oliviera, L.C.A., Fabris, J.D., Perreira, M.C. (2013). Iron oxides and their applications in catalytic processes: A review. Química Nova, 36(1), 123–130. DOI: 10.1590/S0100-40422013000100022
  10. Nikitin, A., Fedorova, M., Naumenko, V. Shchetinin, I., Abakumov, M, Erofeev, A., Gorelkin, P., Meskov, G., Beloglazkina, E., Ivanenkov, Y., Klyachko, N., Golovin, Y., Savchenko A., Majouga, A. (2017). Synthesis, characterization and MRI application of magnetite water-soluble cubic nanoparticles. Journal of Magnetism and Magnetic Materials, 441, 6–13. DOI: 10.1016/j.jmmm.2017.05.039
  11. Zhang, H., Guo, L., Ding, S., Xiong, J., Chen, B. (2016). Targeted photo-chemo therapy of malignancy on the chestwall while cardiopulmonary avoidance based on Fe3O4@ZnO nanocomposites. Oncotarget, 7(24), 36602–36613. DOI: 10.18632/oncotarget.9123
  12. Bilalodin, B., Sunardi, S., Effendy, M. (2013). Chemical compound content analysis and magnetic properties test of ambal beach iron sand. Indonesian Journal of Physics, 17(50), 29–31. DOI: 10.22146/jfi.24420
  13. Ulya, H.N., Taufiq, A. Sunaryo, S. (2019). comparative structural properties of nanosized ZnO/Fe3O4 composites prepared by sonochemical and sol-gel methods comparative structural properties of nanosized ZnO/Fe3O4 composites prepared by sonochemical and sol-gel methods. IOP Conf. Ser.: Earth Environ. Sci. 276 012059, DOI: 10.1088/1755-1315/276/1/012059
  14. Yogasundari, M., Manikandan, A. (2020). Synthesis, structural, morphological and mabnetic properties of Fe3O4/ZnO nanocomposites by co-precipitation method. Malaya Journal of Matematik, 1(2), 2264–2266. DOI: 10.1016/j.physe.2020.114291
  15. Ghanbarnezhad, S., Baghshahi, S., Nemati, A., Mahmoodi, M. (2017). Preparation, magnetic properties, and photocatalytic performance under natural daylight irradiation of Fe3O4-ZnO core/shell nanoparticles designed on reduced GO platelet. Materials Science in Semiconductor Processing, 72, 85–92. DOI: 10.1016/j.mssp.2017.09.015
  16. Winatapura, D.S., Dewi, S.H., Adi, W.A. (2016). Synthesis, characterization, and photocatalytic activity of Fe3O4@ZnO nanocomposite. International Journal of Technology, 7(3), 408–416. DOI: 10.14716/ijtech.v7i3.2952
  17. Elshypany, R., Selim, H., Zakaria, K., Moustafa, A.H., Sadeek, A.S., Sharaa, S.., Raynaud, P., Nada, A.A. (2021). Elaboration of Fe3O4/ZnO nanocomposite with highly perfome photocatalytic activity for degradation methylene blue under visible light irradiation. Environmental Technology & Inovation, 23, 101710. DOI: 10.1016/j.eti.2021.101710
  18. Yangjeh A.H., Maryam, S.G. (2017). Novel magnetic Fe3O4/ZnO/NiWO4 nanocomposites : enhanced visible-light photocatalytic perfomance through p-n heterojunctions. Separation and Purification Technology, 184, 334–346. DOI: 10.1016/j.seppur.2017.05.007
  19. Kusuma, S.W.N. (2016). Inorganic Synthesis. Padang : UNP Press Padang
  20. Toprakci, O., Toprakci, H.A.K., Liwen, J., Xiangwu, Z. (2010). Fabrication and electrochemical characteristics of LiFePO4 powders for lithium-ion batteries. KONA Powder and x Particle Journal, 28(28), 50–73. DOI: 10.14356/kona.2010008
  21. Saridewi, N., Syaputro, H.T., Aziz, I., Dasumiati, D., Kumila, B.N. (2021). Synthesis and characterization of ZnO nanoparticles using pumpkin seed extract (Cucurbita moschata) by the sol-gel method. 4th International Seminar on Chemistry, 2349(June), 020010. DOI: 10.1063/5.0051826
  22. Mollahosseini, A., Toghroli, M. (2015). Synthesis and identification of Fe3O4/clinoptilolite magnetic nanocomposite. Journal of Asian Scientific Research, 5(3), 120–125. DOI: 10.18488/journal.2/2015.5.3/
  23. Nurbayasari, R., Saridewi, N., iShofwatunnisa, S. (2017). Biosynthesis and characterization of ZnO nanoparticles with extract of green seaweed sp. Jurnal Perikanan Universitas Gadjah Mada, 19(1), 17–28. DOI: 10.22146/jfs.24488
  24. Tournebize, J., Boudier, A., Joubert, O., Eidi, H., Bartosz, G., Maincent, P., Leroy, P., Minet A.S. (2012). Impact of gold nanoparticle coating on redox homeostasis. International Journal of Pharmaceutics, 438, 107–116. DOI: 10.1016/j.ijpharm.2012.07.026
  25. Bhavase, B., Veer, A., Shirsath, S., Sonowane, S,H. (2019). ultrasound assisted preparation, characterization and adsorption study of ternary chitosan-ZnO-TiO2 nanocomposite: advantage over conventional method. Ultrasonics Sonochemistry, 52, 120–130. DOI: 10.1016/j.ultsonch.2018.11.003
  26. Liu, Q., Zhou, L., Liu, L., Li, J., Shaobin, W., Hussein, Z., Liu, S. (2020). Magnetic ZnO@Fe3O4 composite for self-generated H2O2 toward photo-fenton-like oxidation of nitrophenol. Composites Part B 200, 108345, 1–8. DOI: 10.1016/j.compositesb.2020.108345
  27. Manoharan, C., Rajendran, V., Sivaraj, R. (2018). Synthesis, characterization and applications of ZnO/TiO2/SiO2 zinc (tris) thiourea sulfate nanocomposite. Orient Journal of Chemistry, 34(3), 1333–1340. DOI: 10.13005/ojc/340319
  28. Vasquez, R.D., Apostol, J.G, de Leon J.D., Mariano, J.D., Mirhan, C.M.C., Pangan,S.S., Reyes, A.G.M., Zamora, E.T. (2016). Polysaccharide-mediated green synthesis of silver nanoparticles from sargassum siliqousum: Assessment of toxicity activity. Open Nano, 1, 16–24. DOI: 10.1016/j.onano.2016.03.001
  29. Bykova, L.E., Myagov, V.G., Tambasov, I.A., Bayukov, O.A., Zhivalov, V.S., Bondarenko, G.N., Nemtsev, I.V., Polyakova, V.V., Patrin, G.S., Velikanov, D.A. (2015). Solid-state synthesis of the ZnO-Fe3O4 nanocomposite: structural and magnetic properties. Physics of the Solid State, 57(2), 386–390. DOI: 10.1134/S1063783415020079
  30. Wang, J., Yang, J., Li, X., Wang, D., Wei, B., Song, H., Li, X., Fu, S. (2016). Preparation and photocatalytic properties of magnetically reusable Fe3O4@ZnO core/shell nanoparticles. Physica, 75(1), 66–71. DOI: 10.1016/j.physe.2015.08.040
  31. Seetawan, U., Jugsujinda, S., Seetawan, T., Ratchasin, A., Euvananont, C., Junin, C., Thanachayanont, C., Chainaronk, P. (2011). Effect of calcinations temperature on crystallography and nanoparticles in ZnO disk. Materials Sciences and Applications, 2(9), 1302–1306. DOI: 10.4236/msa.2011.29176
  32. Shang, C., Barnabé, A. (2013). Structural study and phase transition investigation in a simple synthesis of porous architected-ZnO nanopowder. Materials Characterization, 86, 206–211. DOI: 10.1016/j.matchar.2013.10.004
  33. Rahmawati, R., Handayani, H. (2013). Ferrogel fabrication based on magnetic nanoparticles (Fe3O4) from the synthesis of iron sands on the north coast of java and the properties of magneto elsatis. Neutrino Journal, 5(2), 95–104. DOI: 10.18860/neu.v0i0.2437
  34. Natarajan, S., Bajaj, H.C., Tayade, R.J. (2018). Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. Journal of Environmental Sciences (China), 65, 201–222. DOI: 10.1016/j.jes.2017.03.011
  35. Teja, A.S., Yoon, K.P. (2009). Synthesis, properties, and application of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials, 55(1), 22–45. DOI: 10.1016/j.pcrysgrow.2008.08.003
  36. Chen, X., Mao, S.S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chemical Reviews, 107(7), 2891–2959. DOI: 10.1021/cr0500535
  37. Zhang, M., An, T., Liu, X., Hu, X., Sheng, G., Fu, J. (2010). Preparation of a high-activity ZnO/TiO2 photocatalyst via homogeneous hydrolysis method with low temperature crystallization. Materials Letters, 64(17), 1883–1886. DOI: 10.1016/j.matlet.2010.05.054
  38. Kumar, A., Pandey, G. (2017). A review on the factors affecting the photocatalytic degradation of hazardous materials. Material Science & Engineering International Journal, 1(3), 106–114. DOI: 10.15406/mseij.2017.01.00018
  39. Lee, B., Jeon, Y., Kwon, J. (2006). Study on pH sensor using methylene blue adsorption and a long-period optical fiber grating pair. Journal of the Optical Society of Korea, 10(1), 28–32. DOI: 10.3807/JOSK.2006.10.1.028
  40. Zhang, P., Wang, Y., Zhou, Y., Zhang, H., Wei, X., Sun, W., Meng, S., Han, L. (2019). Preparation and photocatalytic properties of magnetic g-C3N4/TNTs nanocomposites. Molecular Catalysis, 465, 24–32. DOI: 10.1016/j.mcat.2018.12.023
  41. Zhou, D., Cheng, Z., Yang, Q., Dong, X., Zhang, J., Qin, L. (2016). In situ construction of all solid state Z-scheme g@C3N4/TiO2 nanotube arrays photocatayst with enhanced visible light induced. Solar Energy Meter, 157, 399–405. DOI: 10.1016/j.solmat.2016.07.007
  42. Dehghan, S., Babak, K., Roshanak, R.K. (2018). Heterogeneous sonocatalytic degradation of amoxicillin using ZnO@Fe3O4 magnetic nanocomposite: influential factors, reusability and mechanisms. Journal of Molecular Liquids, 1–42. DOI: 10.1016/j.molliq.2018.05.020

Last update:

No citation recorded.

Last update:

No citation recorded.