skip to main content

Highly Selective Bio-hydrocarbon Production using Sidoarjo Mud Based-Catalysts in the Hydrocracking of Waste Palm Cooking Oil

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Indonesia

Received: 12 Aug 2022; Revised: 28 Sep 2022; Accepted: 29 Sep 2022; Available online: 1 Oct 2022; Published: 25 Dec 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

In this work, Lapindo mud (LM) was used as catalyst support. This is because the Lapindo mud has a high SiO2 content of 45.33 %. This research aims to produce a hydrocracking catalyst based on Lapindo mud through impregnation of Ni and Pt metals as well as grafting amine groups. Ni and Pt metals impregnation using wet impregnation method followed by amine group grafting. The best catalyst in this study was NiPt-NH2/LM which contained Ni and Pt metals, surface area, and pore diameters of 1.68 wt.% and 0.4 wt.%, 6.59 m2/g, 15.51 nm, respectively. The effectiveness of the catalyst was tested against temperature and catalyst: feed ratio. The catalyst with the best activity and selectivity was tested for reusability 3 times through hydrocracking process. The yield of liquid products obtained in the hydrocracking process of WPO using NiPt-NH2/LM catalyst with the optimum temperature and the weight ratio of catalyst:feed at 550 oC was 79.4 wt. % which consists of hydrocarbon compound of 55.9 wt.%. The yield of liquid products obtained in the hydrocracking WPO using the used NiPt-BH2/LM catalyst was 28.4 wt.% which consists of hydrocarbon compound of 23.6 wt.%. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Bimetallic Ni-Pt; Hydrocracking; ammonia-functionalized catalyst; Mud catalyst; Reusable catalyst
Funding: The Ministry of Research, Technology, and Higher Education of Indonesia under contract PTUPT Contact number: 2127/UN1/DITLIT/DIT-LIT/PT/2021)

Article Metrics:

  1. Plazas-González, M,. Guerrero-Fajardo C.A., Sodré J.R. (2018). Modelling and simulation of hydrotreating of palm oil components to obtain green diesel. Journal of Cleaner Production, 184, 301-308. DOI: 10.1016/j.jclepro.2018.02.275
  2. Del Río, J.I., Cardeno, F., Pérez, W., Pena, J.D., Rios, L.A. (2018). Catalytic hydrotreating of jatropha oil into non-isomerized renewable diesel: Effect of catalyst type and process conditions, Chemical Engineering Journal, 352, 232-240. DOI: 10.1016/j.cej.2018.07.021
  3. Taufiqurahmi, N., Mohamed, A.R., Bhatia, S. (2011). Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: Process optimization studies, Bioresource Technology, 102, 10686-10694. DOI: 10.1016/j.biortech.2011.08.068
  4. Dinesha, P., Kumar, S., Rosen, M.A. (2019). Performance and emission analysis of a domestic wick stove using biofuel feedstock derived from waste cooking oil and sesame oil. Renewable Energy, 136, 342-351. DOI: 10.1016/j.renene.2018.12.118
  5. Liu, T., Liu, Y., Wu, S., Xue, J., Wu, Y., Li, Y., Kang, X. (2018). Restaurant's behaviour, awareness, and willingness to submit waste cooking oil for biofuel production in Beijing. Journal of Cleaner Production, 204, 636-642. DOI: 1016/j.jcepro.2018.09.056
  6. Yang, H., Chien, S., Lo, M., Lan, J.C., Lu, W., Ku, Y. (2007). Effects of biodiesel on emissions of regulated air pollutants and polycyclic aromatic hydrocarbons under engine durability testing. Atmospheric Environment, 41, 7232-7240. DOI: 10.1016/j.atmosenv.2007.05.019
  7. Wang, Y., Cao, Y., Li, J. (2018). Preparation of biofuels with waste cooking oil by fluid catalytic cracking: The effect of catalyst performances on products. Renewable Energy, 124, 34-39. DOI: 10.1016/j.renene.2017.08.084
  8. Zhang, H., Lin, H., Wang, W., Zheng, Y., Hu, P. (2014). Hydroprocessing of waste cooking oil over a dispersed nano catalyst: Kinetics study and temperature effect. Applied Catalysis B: Environmental, 150-151, 238-248. DOI: 10.1016/j.apcatb.2013.12.006
  9. Mahdi, H.I., Bazargan, A., McKay, G., Azelee, N.I.W., Meili, L. (2021). Catalytic deoxygenation of palm oil and its residue in green diesel production: A current technological review. Chemical Engineering Research and Design, 174, 158-187. DOI: 10.1016/j.cherd.2021.07.009
  10. Khodadi, M.R., Malpartida, I., Tsang, C., Lin, C.S.K., Len, C. (2020). Recent advances on the catalytic conversion of waste cooking oil. Molecular Catalysis, 494, 111128. DOI: 10.1016/j.mcat.2020.111128
  11. Mironenko, O.O., Sosnin, G.A., Eletskii, P.M., Gulyaeva, Y.K., Bulavchenko, O.A., Stonkus, O.A., Rodina, V.O., Yakovlev, V.A. (2017). A study of the catalytic steam cracking of heavy crude oil in the presence of a disperses molybdenum-containing catalyst. Petroleum Chemistry, 57(7), 618-629. DOI: 10.1134/S0965544117070088
  12. Pham, D.V., Nguyen, N.T., Kang, K.H,. Seo, P.W., Kim, G.T., Park, Y., Park, S. (2022). Effect of slurry phase catalyst and H2 pressure on hydrocracking of SDA (solvent de-asphalting) pitch. Korean Journal of Chemical Engineering, 39, 1215-1226. DOI: 10.1007/s11814-021-1026-7
  13. Regali, F., París, R.S., Aho, A., Boutonnet, M., Järås, S. (2013). Deactivation of Pt/silica-alumina and effect on selectivity in the hydrocracking of n-hexadecane. Topics in Catalysis, 56, 594-601. DOI: 10.1007/s11244-013-0011-8
  14. Doronin, V.P., Sorokina, T.P., Potapenko, O.V. (2019). The formation of properties of ultrastable zeolite Y for cracking and hydrocracking catalysts. Petroleum Chemistry, 59(3), 310-317. DOI: 10.1134/S0965544119030046
  15. Maximov, N.M., Zurnina, A.A., Dokuchaev, I.S., Solmanov, P.S., Eremina, Y.V., Zhilkina, E.O., Koptenatmusov, V.B., Pimerzin, A.A. (2021). Comparative analysis of transformations of heavy oil feedstock model components under cracking conditions in the presence of metal and acid catalysts. Chemistry Technology of Fuels and Oil, 56(6), 878-884. DOI: 10.107/s10553-021-01203-4
  16. Thangadurai, T., Tye, C.T. (2021) Acidity and basicity of metal oxide-based catalysts in catalytic cracking of vegetable oil. Brazilian Journal of Chemical and Engineering, 38, 1-20. DOI: 10.1007/s43153-020-0085-z
  17. De, S., Zhang, J., Luque, R., Yan, N. (2016) Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy and Environmental Sciences, 9, 3314-3347. DOI: 10.1039/C6EE02002J
  18. Mayorga, M.A., Cadavid, J.G., Palacios, O.Y.S., Vargas, J., González, J., Narváez, P.C. (2019). Production of renewable diesel by hydrotreating of palm oil with noble metallic catalysts. Chemical Engineering Transaction, 74, 7-12. DOI: 10.3303/CET1974002
  19. Talib, N.B., Triwahyono, S., Jalil, A., Mamat, C.R., Salamun, N., Fatah, N.A.A., Sidik, S.M., The, L.P. (2016). Utilization of a cost effective Lapindo mud catalyst derived from eruption waste for transesterification of waste oils. Energy Conversion and Management, 108, 411-421. DOI: 10.1016/j.enconman.2015.11.031
  20. Puspitasari, R.N., Budiarti, H.A., Hatta, A.M., Sekartedjo, Risanti, D.D. (2017). Enhanced dye-sensitized solar cells performance through novel core-shell structure of gold nanoparticles and nano-silica extracted from Lapindo mud. Procedia Engineering, 170, 93-100. DOI: 10.1016/j.proeng.2017.03.018
  21. Valenstein, J.S., Kandel, K., Melcher, F., Slowing, I.I., Lin, V.S., Trewyn, B.G. (2017). Functional mesoporous silica nanoparticles for the selective sequestration of free fatty acids from microalgal oil. ACS Applied Material & Interfaces, 4, 1003-1009. DOI: 10.1021/am201647t
  22. Kandel, K., Frederickson, C., Smith, E.A., Lee, Y., Slowing, I.I, (2013) Bifunctional adsorbent-catalytic nanoparticles for the refining of renewable feedstocks. ACS Catalysis, 3, 2750-2758. DOI: 10.1021/cs4008039
  23. Kord, M., Nematollahzadeh, A., Mirzayi, B. (2019). Second-order isothermal reaction in a semi-batch reactor: modeling, exact analytical solution, and experimental verification. Reaction Chemistry & Engineering, 4, 2011-2020. DOI: https://doi.org/10.1039/C9RE00174C
  24. Kim, H., Nguyen-Huy, C., Shin, E.W. (2014). Macroporous NiMo/alumina catalyst for the hydrocracking of vacuum residue. Reaction Kinetics, Mechanism and Catalysis, 113, 431-443. DOI: 10.1007/s11144-014-0764-5
  25. Ting-ting, W,. Yang, L., Li-jun. J., De-chao, W., De-meng, Y., Hao-quan, H. (2019). Upgrading of coal tar with steam catalytic cracking over Al/Ce and Al/Zr co-doped Fe2O3 catalysts. Journal of Fuel Chemistry and Technology, 47(3), 287-296. DOI: 10.1016/S1872-5813(19)30013-1
  26. Trisunaryanti, W., Larasati, S., Bahri, S., Ni'mah,Y.L., Efiyanti, L., Amri, K., Nuryanto, R., Sumbogo, S.D, (2020). Performance comparison of Ni-Fe loaded on NH2-functionalized mesoporous silica and beach sand in hydrotreatment of waste palm cooking oil. Journal of Environmental Chemical Engineering, 8, 104477. DOI: 10.1016/j.jece.2020.104477
  27. Ebrahiminejad, M., Karimzadeh, R. (2022). Diesel hydrocracking and hydrodesulfurization with activated red mud-supported and fluorine-containing NiW nanocatalysts. Molecular Catalysis, 517, 112056. DOI: 10.1016/j.mcat.2021.112056
  28. Ge, Y., Jia, Z., Gao, C., Gao, P., Zhao, L., Zhao, Y. (2014). Synthesis of mesoporous silica-alumina materials via urea-templated sol-gel route and their catalytic performance for THF polymerization. Russian Journal Physical Chemistry, 88, 1650-1655. DOI: 10.1134/S0036024414100355
  29. Aneu, A., Wijaya, K., Syoufian, A. (2021). Silica-based acid catalyst with different concentration H2SO4 and calcination temperature: Preparation and characterization. Silicon, 13, 2265-22670. DOI: 10.1007/s12633-020-00741-6
  30. Kusumastuti, H., Trisunaryanti, W., Falah, I.I., Marsuki, M.F. (2018) Synthesis of mesoporous silica-alumina from Lapindo mud as a support of Ni and Mo metals catalysts for hydrocracking of pyrolyzed α-celulose. RASĀYAN Journal of Chemistry, 11(2), 522-530. DOI: 10.7324/RJC.2018.1122061
  31. Tanimu, A., Jillani, S.M.S., Ganiyu, S.A., Chowdhury, S., Alhooshani, K. (2021). Multivariate optimization of chlorinated hydrocarbons' micro-solid-phase extraction from wastewater using germania decorated mesoporous alumina-silica sorbent and analysis by GC-MS. Microchemical Journal, 160, 105674. DOI: 10.1016/j.microc.2020.105674
  32. Tran, T.H.Y., Schut, H., Haije, W.G., Schoonman, J. (2011). Structural characterization and porosity analysis in self-supported porous alumina-silica thin films. Thin Solid Films, 520, 30-34. DOI: 10.1016/j.tsf.2011.06.027
  33. Mardkhe, M.K., Huang, B., Bartholomew, C.H., Alam, T.M., Woodfield, B.F. (2016). Synthesis and characterization of silica doped alumina catalyst support with superior thermal stability and unique pore properties. Journal of Porous Materials, 23, 475-487. DOI: 10.1007/s10934-015-0101-z
  34. Kumar, M.S., Vanmathi, M., Senguttuvan, G., Mangalaraja, R.V., Sakthivel, G. (2019). Fly ash constituent-silica and alumina role in the synthesis and characterization of cordierite based ceramics. Silicon, 11, 2599-2611. DOI: 10.1007/s12633-018-0049-0
  35. Molero, H., Galarraga, C., Geng, F., Hernandez, E., Birss, V., Pereira, P. (2009) High performance Ni based catalyst for toluene hydrocracking. Catalysis Letters, 132, 402-409. DOI: 10.1007/s10562-009-0128-3
  36. Chumachenko, V.A., Lavrenov, A.V., Buluchevskii, E.A., Arbuzov, A.B., Gulyaeva, T.I., Drozdov, V.A. (2016). Hydrocracking of vegetable oil on boron-containing catalysts: Effect of the nature and content of a hydrogenation component. Catalysis in Industry, 8, 56-74. DOI: 10.1134/S2070050416010037
  37. Kostyniuk, A., Bajec, D., Likozar, B. (2021). Catalytic hydrogenation, hydrocracking and isomerization reaction of biomass tar model compound mixture over Ni-modified zeolite catalysts in packed bed reactor. Renewable Energy, 167, 409-424. DOI: 10.1016/j.renene.2020.11.098
  38. Bozorgi, B., Karimi-Sabet, J., Khadiv-Parsi, P. (2022). The removal of N2O from gas stream by catalytic decomposition over Pt-alkali metal/SiO2. Environmental Technology and Innovation, 26, 102344. DOI: 10.1016/j.eti.2022.102344
  39. Dubey, R.S., Rajesh, Y.B.R.D., More, M.A. (2015) Synthesis and characterization of SiO2 nanoparticles via sol-gel method for industrial applications. Materials Today: Proceedings, 2(4-5), 3575-3579. DOI: 10.1016/j.matpr.2015.07.098
  40. Li-wei, Z., Jian-gang, W., Ping-ping, Z., Feng, S., Xiu-yiu, S., Lihong, W., Hong-you, C., Wei-ming, Y. (2017). Preparation of the Nb-P/SBA-15 catalyst and its performance in the dehydration of fructose to 5-hydroxymethylfurfural. Journal of Fuel Chemistry and Technology, 45(6), 651-659. DOI: 10.1016/S1872-5813(17)30034-8
  41. Francis, J., Guillon, E., Bats, N., Pichon, C., Corma, A., Simon, L.J. (2011). design of improved hydrocracking catalysts by increasing the proximity between acid and metallic sites. Applied Catalysis A: General, 409-410, 140-147. DOI: 10.1016/j.apcata.2011.09.040
  42. Pratiwi, R.G., Wantala, K. (2022). Hydro-conversion of palm oil via continuously pyrolytic catalysis to biofuels over oxide-based catalyst derived from waste blood clamshell: Effect of magnesium contents. Molecular Catalysis, 523, 111468. DOI: 10.1016/j.mcat.2021.111468
  43. Alisha, G.D., Trisunaryanti, W., Syoufian, A. (2022). Mesoporous silica from Parangtritis beach sand templated by CTAB as a support of Mo metal as a catalyst for hydrocracking of waste palm cooking oil into biofuel. Waste and Biomass Valorization, 13, 1311-1321. DOI: 10.1007/s12649-021-01559-y
  44. Ma, Y., Liang, R., Wu, W., Zhang, J., Cao, Y., Huang, K., Jiang, L. (2021). Enhancing the activity of MoS2/SiO2-Al2O3 bifunctional catalysts for suspended-bed hydrocracking of heavy oils by doping with Zr atoms. Chinese Journal of Chemical Engineering, 39, 126-134 (2021). DOI: 10.1016/j.cjche.2021.03.015
  45. Subsadsana, M., Kham-or, P., Sangdara, P., Suwannasom, P., Ruangviriyachai, C. (2017). Synthesis and catalytic performance of bimetallic NiMO- and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels. Journal of Fuel Chemistry and Technology, 45(7), 805-816. DOI: 10.1016/S1872-5813(17)30039-7
  46. Do, P.T.M., Foster, A.J., Chen, J., Lobo, R.F. (2012). Bimetallic effects in the hydrodeoxygenation of meta-cresol on γAl2O3 supported Pt-Ni and Pt-Co catalysts. Green Chemistry, 14, 1388-1397. DOI: 10.1039/C2GC16544A
  47. Žula, M., Grilc, M., Likozar, B. (2022). Hydrocracking hydrogenation and hydro-deoxygenation of fatty acids, esters and glycerides: Mechanisms, kinetics, and transport phenomena. Chemical Engineering Journal, 444, 136564. DOI: 10.1016.j.cej.2022.136564
  48. Kang, J., Ma, W., Keogh, R.A., Shafer, W.D., Jacobs, G., Davis, B.H. (2012). Hydrocracking and hydroisomerization of n-Hexadecane, n-Octacosane and Fischer-Tropsch wax over a Pt/SiO2-Al2O3 Catalyst. Catalysis Letters, 142, 1295-1305. DOI: 10.10117/s10562-012-0910-5
  49. Wang, H., Farooqi, H., Chen, J. (2015). Co-hydrotreating light cycle oil-canola oil blends. Frontiers of Chemical Science and Engineering, 9(1), 64-76. DOI: 10.1007/s11705-015-1504-8
  50. Trieu, T.Q., Guan, G., Liu, G., Tsubaki, N., Samart, C., Reubroycharoen, P. (2017). Direct synthesis of iso-paraffin fuel from palm oil on mixed heterogeneous acid and base catalysts. Montash für Chemies, 148, 1235-1243. DOI: 10.1007/s00706-017-1963-3
  51. Lovás, P., Hudec, P., Hadvinová, M., Ház, A. (2015). Use of ZSM-5 catalyst in deoxygenation of waste cooking oil. Chemical Papers, 69(11), 1454-1464. DOI: 10.1515/chempap-2015-0159
  52. Tóth, C., Sági, D., Hancsók, J. (2015). Diesel fuel production by catalytic hydrogenation of light cycle oil and waste cooking oil containing gas oil. Topics in Catalysis, 58, 948-960. DOI: 10.1007/s11244-015-0463-0
  53. Ahmadi, S., Yuan, Z., Rohani, S., Xu, C. (2015). Effects of nano-structured CoMo catalysts on hydrodeoxygenation of fast pyrolysis oil in supercritical ethanol. Catalysis Today, 269, 182-194. DOI: 10.1016/j.cattod.2015.08.040
  54. Wijaya, K., Kurniawan, M.A., Saputri, W.D., Trisunaryanti, W., Mirzan, M., Hariani, P.L., Tikoalu, A.D. (2021). Synthesis of nickel catalyst supported on ZrO2/SO4 pillared bentonite and its application for conversion of coconut oil into gasoline via hydrocracking process. Journal of Environmental Chemical Engineering, 9, 105399. DOI: 10.1016/j.jece.2021.105399
  55. Pongsendana, M., Trisunaryanti, W., Artanti, F.W., Falah, I.I., Sutarno. (2017), Hydrocracking of waste lubricant into gasoline fraction over CoMo catalyst supported on mesoporous carbon from bovine bone gelatin. Korean Journal of Chemical Engineering, 34, 2591-2596. DOI: 10.1007/s11814-017-0165-3
  56. Chen, J., Shi, H., Li, L., Li, K. (2014). Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts. Applied Catalysis B : Environmental, 144. 870-884. DOI: 10.1016/j.apcatb.2013.08.026
  57. Saab, R., Polychronopoulou, K., Zheng, L., Kumar, S., Schiffer, A. (2020). Synthesis and performance evaluation of hydrocracking catalysts: A review. Journal of Industrial and Engineering Chemistry, 89, 83-103. DOI: 10.1016/j.jiec.2020.06.022
  58. Landa, L., Remiro, A., Valecillos, J., Valle, B., Bilbao, J., Gayubo, A.G. (2022). Unveiling the deactivation by coke of NiAl2O4 spinel derived catalysts in the bio-oil steam reforming: Role of individual oxygenates. Fuel, 321, 124009. DOI: 10.1016/j.fuel.2022.124009
  59. He, S., Goldhorn, H.R., Tegudeer, Z., Chandel, A., Heeres, A., Stuart, M.C.A., Heeres, H.J. (2022). A time- and space resolved catalyst deactivation study on the conversion of glycerol to aromatics using H-ZSM-5. Chemical Engineering Journal, 434, 134620. DOI: 10.1016/j.cej.2022.134620
  60. He, S., Klei, F.G.H., Kramer, T.S., Chandel, A., Tegudeer, Z., Heeres, A., Heeres, H.J. (2022). Catalytic co-conversion of glycerol and oleic acid to bio-aromatics: catalyst deactivation studies for a technical H-ZSM-5/Al2O3 catalyst. Applied Catalysis A : General, 632, 118486. DOI: 10.1016/j.apcata.2022.118486

Last update:

No citation recorded.

Last update:

No citation recorded.