skip to main content

Photocatalytic Degradation of Malachite Green by NiAl-LDH Intercalated Polyoxometalate Compound

1Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia

2Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia

3Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia

Received: 6 Aug 2022; Revised: 20 Sep 2022; Accepted: 21 Sep 2022; Available online: 22 Sep 2022; Published: 30 Sep 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

Composites based on layered double hydroxide with polyoxometalate K3[-PW12O40] and K4[-SiW12O40] were synthesized to form NiAl-[SiW12O40] and NiAl-[PW12O40]. The materials were characterized by XRD, FTIR, SEM, and UV-DRS and were then applied as a photocatalyst to degrade MG. The effects of catalyst loading, pH value, and contact times on photodegradation performance were carried out in this study. The results indicated that        NiAl-LDH was successfully synthesized by showing the peak diffractions at angles 11.63°, 23.13°, and 35.16°. Both kinds of attained NiAl-[SiW12O40] and NiAl-[PW12O40] had typical structures of LDH that were proved by appearing diffraction at 2θ angles 10.76°, 26.59°, 30.8°, and 63.11° for NiAl-[PW12O40] and at 2θ angles 8.26°, 11.34°, 29°, and 35.1° for NiAl-[SiW12O40]. The materials used for the fifth regeneration were characterized by FTIR, which still presents characteristics of LDH structure. The photocatalyst was applied for the first time to degrade MG. The decrease of band gap on NiAl pristine than LDH composite from 4.76 eV to 3.22 eV for NiAl-[SiW12O40] and 3.78 eV for NiAl-[PW12O40] respectively, was presented by DR-UV analysis. LDH composite shows improved degradation photocatalytic performance in comparison with LDH pristine. It was present by the %degradation MG performances were 68.94% for NiAl LDH, 84.51% for NiAl-[PW12O40]), and 88.91% for NiAl-[SiW12O40]. The degradation percentage indicates that the LDH-polyoxometalate composite has succeeded in increasing the ability of photodegradation catalytic and the regeneration ability of LDH pristine. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: LDH; Polyoxometalate; Photocatalytic; Malachite green
Funding: Ministry of Education, Culture, Research and the Technology, Republic of Indonesia under contract Hibah Disertasi Doktor no. 142/E5/PG.02.00.PT/2022 and no. 0145.005/UN.9.3.1/PL/2022

Article Metrics:

  1. Malherbe, F., Besse, J.P. (2000). Investigating the effects of guest-host interactions on the properties of anion-exchanged Mg-Al hydrotalcites. Journal of Solid State Chemistry, 155(2), 332–341. DOI: 10.1006/jssc.2000.8922
  2. Lesbani, A., Siregar, P.M.S.B.N., Palapa, N.R., Taher, T., Riyanti, F. (2021). Adsorptive removal methylene-blue using zn/al ldh modified rice husk biochar. Polish Journal of Environmental Studies, 30(4), 3117–3124. DOI: 10.15244/pjoes/130971
  3. Costantino, U., Leroux, F., Nocchetti, M., Mousty, C. (2013). LDH in Physical, Chemical, Biochemical, and Life Sciences, 2nd ed. Elsevier Ltd
  4. Das, S. (2020). Materials Today : Proceedings Superior photocatalytic performance of Co Al LDH in the race of metal incorporated LDH : A comparison study. Materials Today: Proceedings, 828, 154462, DOI: 10.1016/j.matpr.2020.05.759
  5. Xue, X., Yu, F., Li, J., Bai, G., Yuan, H., Hou, J., Peng, B., Chen, L., Yuen, M., Wang, G., Wang, F., Wang, C. (2019). Science Direct Polyoxometalate intercalated NiFe layered double hydroxides for advanced water oxidation. International Journal Hydrogen Energy, 1-8. DOI: 10.1016/j.ijhydene.2019.11.038
  6. Xu, Y., Li, Z., Su, K., Fan, T., Cao, L. (2018). Mussel-inspired modification of PPS membrane to separate and remove the dyes from the wastewater. Chemical Engineering Journal, 341, 371–382. DOI: 10.1016/j.cej.2018.02.048
  7. Xu, M., Pan, G., Meng, Y., Guo, Y., Wu, T., Chen, H. (2019). Effect of Ce3+ on the photocatalytic activity of MAlCe ternary hydrotalcites-like compounds in methylene blue photodegradation. Applied Clay Science, 170, 46–56. DOI: 10.1016/j.clay.2019.01.011
  8. Lesbani, A., Normah, N., Palapa, N.R., Taher, T., Andreas, R., Mohadi, R. (2020). Removal of Iron (II) Using Ni/Al Layered Double Hydroxide Intercalated with Keggin Ion. Molekul, 15 (3), 149–157. DOI: 10.20884/
  9. Zhou, Q., Chen, F., Wu, W., Bu, R., Li, W., Yang, F. (2016). Reactive orange 5 removal from aqueous solution using hydroxyl ammonium ionic liquids / layered double hydroxides intercalation composites. Chemical Engineering Journal, 285, 198–206. DOI: 10.1016/j.cej.2015.10.004
  10. Zhang, L., Meng, Y., Shen, H., Li, J., Yang, C., Xie, B., Xia, S. (2021). Applied Surface Science Photocatalytic degradation of rhodamine B by Bi2O3@LDHs S–scheme heterojunction : Performance, kinetics and mechanism. Applied Surface Science, 567, 150760. DOI: 10.1016/j.apsusc.2021.150760
  11. Qing, X., Yuan, L., Wang, Y., Zhang, Z., Bi, M., Weng, X. (2021). Synergistic influence of Cr3+ and CrO42− on the visible near-infrared spectrum of Mg-Al layered double hydroxides for efficient visible-light photocatalysis. Journal of Alloys and Compounds, 872, 159628. DOI: 10.1016/j.jallcom.2021.159628
  12. Bachir, M., Salah, M.M., El-fala, B.Z., Soulard, M. (2014). Possibility of adsorption of phenols on one natural bentonite. Physics Procedia, 55, 356–366. DOI: 10.1016/j.phpro.2014.07.052
  13. Wei, X., Fu, Y., Xu, L., Li, F., Bi, B., Liu, X. (2008). Tungstocobaltate-pillared layered double hydroxides: Preparation, characterization, magnetic and catalytic properties. Journal of Solid State Chemistry, 181(6), 1292–1297. DOI: 10.1016/j.jssc.2008.02.030
  14. Bi, B., Xu, L., Xu, B., Liu, X. (2011). Applied Clay Science Heteropoly blue-intercalated layered double hydroxides for cationic dye removal from aqueous media. Applied Clay Science, 54, 242–247. DOI: 10.1016/j.clay.2011.09.003
  15. Miao, Y., Guo, R., Gu, J., Liu, Y., Wu, G. (2020). Applied Surface Science Fabrication of β-In2S3/NiAl-LDH heterojunction photocatalyst with enhanced separation of charge carriers for efficient CO2 photocatalytic reduction. Applied Surface Science, 527, 146792. DOI: 10.1016/j.apsusc.2020.146792
  16. Hong, N., Song, L., Wang, B., Stec, A.A., Hull, T.R., Zhan, J., Hu, Y. (2014). Co-precipitation synthesis of reduced graphene oxide/NiAl-layered double hydroxide hybrid and its application in flame retarding poly(methyl methacrylate). Materials Research Bulletin, 49, 657–664. DOI: 10.1016/j.materresbull.2013.09.051
  17. Jiang, L., Liu, J., Zuo, K., Zou, L., Li, Y.Y., Qian, G., Xu, Z.P. (2018). Performance of layered double hydroxides intercalated with acetate as biodenitrification carbon source: The effects of metal ions and particle size. Bioresource Technology, 259, 99–103. DOI: 10.1016/j.biortech.2018.03.032
  18. Yuliasari, N., Wijaya, A., Mohadi, R., Elfita, E., Lesbani, A. (2022). Photocatalytic Degradation of Malachite Green by Layered Double Hydroxide Based Composites. Bulletin of Chemical Reaction Engineering & Catalysis, 17(2), 240–249. DOI: 10.9767/bcrec.17.2.13482.240-249
  19. Gholami, P., Khataee, A., Darvishi, R., Soltani, C., Dinpazhoh, L. (2020). Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH @biochar nanocomposite. Journal of Hazardous Materials, 382, 121070. DOI: 10.1016/j.jhazmat.2019.121070
  20. Amini, M., Khaksar, M., Ellern, A., Keith Woo, L. (2018). A new nanocluster polyoxomolybdate [Mo36O110(NO)4(H2O)14]·52H2O Synthesis, characterization and application in oxidative degradation of common organic dyes. Chinese Journal of Chemical Engineering, 26, 337–342. DOI: 10.1016/j.cjche.2017.03.031
  21. Tian, Y., Ma, H., Xing, B. (2021). Preparation of surfactant modified magnetic expanded graphite composites and its adsorption properties for ionic dyes. Applied Surface Science, 537, 147995. DOI: 10.1016/j.apsusc.2020.147995
  22. Zhang, L., Li, L., Sun, X., Liu, P., Yang, D., Zhao, X. (2016). ZnO-layered double hydroxide@graphitic carbon nitride composite for consecutive adsorption and photodegradation of dyes under UV and visible lights. Materials, 9 (11), 927. DOI: 10.3390/ma9110927
  23. Mohapatra, L., Parida, K.M. (2012). Zn-Cr layered double hydroxide: Visible light responsive photocatalyst for photocatalytic degradation of organic pollutants. Separation and Purification Technology, 91, 73–80. DOI: 10.1016/j.seppur.2011.10.028
  24. Lesbani, A., Mohadi, R. (2014). Brönsted acid of Keggin type polyoxometalate catalyzed pinacol rearrangement. Bulletin of Chemical Reaction Engineering and Catalysis, 9(2), 136–141. DOI: 10.9767/bcrec.9.2.6074.136-141
  25. Lan, J., Wu, X., Lü, K., Si, L., Deng, K. (2015). Fabrication of TiO2 hollow microspheres using K3PW12O40 as template. Chinese Journal of Catalysis, 36, 2237–2243. DOI: 10.1016/S1872-2067(15)60987-1
  26. Lesbani, A., Palapa, N.R., Sayeri, R.J., Taher, T., Hidayati, N. (2021). High reusability of NiAl LDH/biochar composite in the removal methylene blue from aqueous solution. Indonesian Journal of Chemistry, 21, 421–434. DOI: 10.22146/ijc.56955
  27. Hadnadjev-Kostic, M., Vulic, T., Marinkovic-Neducin, R., Lončarević, D., Dostanić, J., Markov, S., Jovanović, D. (2017). Photo-induced properties of photocatalysts: A study on the modified structural, optical and textural properties of TiO2–ZnAl layered double hydroxide based materials. Journal of Cleaner Production, 164, 1–18. DOI: 10.1016/j.jclepro.2017.06.091
  28. Valim, B., Cardoso, L.P. (2004). Competition between three organic anions during regeneration process of calcined LDH. 65(3), 481–485. DOI: 10.1016/j.jpcs.2003.08.034
  29. Siregar, P., Wijaya, A., Nduru, J.P., Hidayati, N., Lesbani, A. (2022). Layered Double Hydroxide / C (C =Humic Acid ; Hydrochar) As Adsorbents of Cr (VI). Science and Technology Indonesia, 7(1), 41–48. DOI: 10.26554/sti.2022.7.1.41-48
  30. Normah, Palapa, N.R., Taher, T., Mohadi, R., Utami, H.P., Lesbani, A. (2021). The ability of composite ni/al-carbon based material toward readsorption of iron(II) in aqueous solution. Science and Technology Indonesia, 6(3), 156–165. DOI: 10.26554/sti.2021.6.3.156-165
  31. Wang, J.A., Chen, L.F., Noreña, L.E. (2008). Al-MCM-41 and Pt / H3PW12O40 / Al-MCM-41 : structure characterization and catalytic properties. Studies in Surface Science and Catalysis, 174, 1259–1262. DOI: 10.1016/S0167-2991(08)80117-6
  32. Nayak, S., Parida, K. (2021). Comparison of NiFe-LDH based heterostructure material towards photocatalytic rhodamine B and phenol degradation with water splitting reactions. Materials Today: Proceedings, 35, 243–246. DOI: 10.1016/j.matpr.2020.05.332
  33. Fernandes, A.J.S., Sodr, W.C., Bezerra, B., Rojas, A., Perez-carvajal, J., Alc, A.C.S. (2021). Applied Surface Science In situ assembling of layered double hydroxide to magadiite layered silicate with enhanced photocatalytic and recycling performance. Applied Surface Science, 569, 151007. DOI: 10.1016/j.apsusc.2021.151007
  34. Lesbani, A., Marpaung, A., Verawaty, M., Rizki Amalia, H., Mohadi, R. (2015). Catalytic Desulfurization of Benzothiophene Using Keggin Type Polyoxometalates as catalyst. The Journal of Pure and Applied Chemistry Research, 4(1), 5–11. DOI: 10.21776/ub.jpacr.2015.004.01.202
  35. Elhalil, A., Abdennouri, M., Sadiq, M., Kadmi, Y., Favier, L., Barka, N. (2018). Synthesis of Ba doped ZnO-Al2O3 nanocomposite from layered double hydroxide structure and their photocatalytic activity for the degradation of caffeine. Journal of Applied Surfaces and Interfaces, 4, 9–16. DOI: 10.48442/IMIST.PRSM/jasi-v4i1-3.12153
  36. Wang, Y., Guo, S., Xin, X., Zhang, Y., Wang, B., Tang, S., Li, X. (2021). Applied Surface Science Effective interface contact on the hierarchical 1D/ 2D CoO/ NiCo-LDH heterojunction for boosting photocatalytic hydrogen evolution. Applied Surface Science, 549, 149108. DOI: 10.1016/j.apsusc.2021.149108
  37. Contreras-Ruiz, J.C., Martínez-Gallegos, S., García-Rivas, J.L., Illescas, J., González-Juárez, J.C., Miranda, G.M., Regil, E.O. (2019). Influence of the textural parameters of LDH-TiO2 composites on phenol adsorption and photodegradation capacities. International Journal of Photoenergy, 1-11. DOI: 10.1155/2019/5783507
  38. Motlagh, P.Y., Khataee, A., Hassani, A., Sadeghi Rad, T. (2020). ZnFe-LDH/GO nanocomposite coated on the glass support as a highly efficient catalyst for visible light photodegradation of an emerging pollutant. Journal of Molecular Liquids, 302, 112532. DOI: 10.1016/j.molliq.2020.112532
  39. Hu, Y.L., Wu, Z., Zheng, X., Lin, N., Yang, Y., Zuo, J., Sun, D., Jiang, C., Sun, L., Lin, C., Fu, Y. (2017). ZnO/ZnGaNO heterostructure with enhanced photocatalytic properties prepared from a LDH precursor using a coprecipitation method. Journal of Alloys and Compounds, 709, 42–53. DOI: 10.1016/j.jallcom.2017.02.124
  40. Ma, C., Wang, F., Zhang, C., Yu, Z., Wei, J., Yang, Z., Li, Y., Li, Z., Zhu, M., Shen, L., Zeng, G. (2017). Photocatalytic decomposition of Congo red under visible light irradiation using MgZnCr-TiO2 layered double hydroxide. Chemosphere, 168, 80–90. DOI: 10.1016/j.chemosphere.2016.10.063
  41. Wang, L., Zhu, Z., Wang, F., Qi, Y., Zhang, W., Wang, C. (2021). Chemosphere State-of-the-art and prospects of Zn-containing layered double hydroxides (Zn-LDH)-based materials for photocatalytic water remediation. Chemosphere, 278, 130367. DOI: 10.1016/j.chemosphere.2021.130367
  42. Li, S., Wang, L., Li, Y.D., Zhang, L., Wang, A., Xiao, N., Gao, Y., Li, N., Song, W., Ge, L., Liu, J. (2019). Novel photocatalyst incorporating Ni-Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution. Applied Catalysis B: Environmental, 254, 145–155. DOI: 10.1016/j.apcatb.2019.05.001
  43. Yuliasari, N., Wijaya, A., Amri, A., Mohadi, R., Elfita, E., Lesbani, A. (2022). Application of M2+ (Magnesium, Zinc)/Alumina-Metal Oxide Composites as Photocatalysts for the Degradation of Cationic Dyes. Ecological Engineering & Environmental Technology, 23(4), 125–135. DOI: 10.12912/27197050/150374
  44. Boumeriame, H., Da, E.S., Cherevan, A.S., Chafik, T., Faria, J.L., Eder, D. (2022). Layered double hydroxide (LDH)-based materials : A mini-review on strategies to improve the performance for photocatalytic water splitting. Journal of Energy Chemistry, 64, 406–431. DOI: 10.1016/j.jechem.2021.04.050
  45. Zhao, G., Zou, J., Li, C., Yu, J., Jiang, X., Zheng, Y., Hu, W., Jiao, F. (2018). Enhanced photocatalytic degradation of rhodamine B, methylene blue and 4-nitrophenol under visible light irradiation using TiO2/MgZnAl layered double hydroxide. Journal of Materials Science: Materials in Electronics, 29(8), 7002–7014. DOI: 10.1007/s10854-018-8687-y
  46. Nayak, S., Parida, K.M. (2016). Nanostructured CeO2/MgAl-LDH composite for visible light induced water reduction reaction. International Journal of Hydrogen Energy, 41(46), 21166–21180. DOI: 10.1016/j.ijhydene.2016.08.062
  47. Li, Q., Kang, Z., Mao, B., Wang, E., Wang, C., Tian, C., Li, S. (2008). One-step polyoxometalate-assisted solvothermal synthesis of ZnO microspheres and their photoluminescence properties. Materials Letters, 62(16), 2531–2534. DOI: 10.1016/j.matlet.2007.12.041

Last update:

No citation recorded.

Last update:

No citation recorded.