skip to main content

Insights into the Titania (TiO2) Photocatalysis on the Removal of Phthalic Acid Esters (PAEs) in Water

1Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor, Malaysia

2Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia (UTM), 81310 UTM Johor, Malaysia

Received: 3 Aug 2022; Revised: 14 Sep 2022; Accepted: 14 Sep 2022; Available online: 17 Sep 2022; Published: 30 Sep 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

In this era of globalization, plastic is regarded as one of the most versatile innovations, finding its uses ranging from packaging, automotive, agriculture, and construction to the medical and pharmaceutical industries. Unfortunately, the single-use nature of plastics leads to ecological and environmental problems. Among conventional disposal management of plastic waste are landfilling dumping, incineration, and recycling. However, not all plastic waste goes into disposal management and ends up accumulating in lakes, rivers, and seas. In the aquatic environment, the action of photochemical weathering plastics has resulted in the release of chemical additives such as phthalic acid esters (PAEs), an important plasticizer added to plastic products to improve their softness, flexibility, and durability. Nowadays, PAEs have been ubiquitously detected in our environment and numerous organisms are exposed to PAEs to some extent. As PAEs carry endocrine disruptive and carcinogenicity properties, an urgent search for the development of an efficient and effective method to remove PAEs from the environment is needed. As a viable option, titania (TiO2) photocatalysis is a promising tool to combat the PAEs contamination in our environment owing to its high photocatalytic activity, cost-effectiveness, and its ability to totally mineralize PAEs into carbon dioxide and water. Hence, this paper aims to highlight the concerning issue of the contamination of PAEs in our aquatic environments and the summary of the removal of PAEs by TiO2 photocatalysis. This review concerning the significance of knowledge on environmental PAEs would hopefully spark huge interest and future development to tackle this plastic-associated pollutant. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Titania; Heterogeneous photocatalysis; Plasticizer; Phthalic acid esters; Water remediation
Funding: Ministry of Education (MOE), Malaysia under contract Fundamental Research Grant Scheme (FRGS/1/2021/STG04/UTM/02/2); Kurita Water and Environment Foundation under contract Kurita Asia Research Grant (22Pny153-I4)

Article Metrics:

  1. Bergmann, M., Collard, F., Fabres, J., Gabrielsen, G.W., Provencher, J.F., Rochman, C.M., Sebille, v.E., Tekman, M.B. (2022). Plastic pollution in the Arctic. Nature Reviews Earth & Environment, 3, 323-337. DOI: 10.1038/s43017-022-00279-8
  2. Thompson, R.C., Moore, C.J., vom Saal, F.S., Swan, S.H. (2009). Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153-2166. DOI: 10.1098/rstb.2009.0053
  3. Anuar Sharuddin, S.D., Abnisa, F., Wan Daud, W.M.A., Aroua, M.K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308-326. DOI: 10.1016/j.enconman.2016.02.037
  4. Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E., Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179-199. DOI: 10.1016/j.jhazmat.2017.10.014
  5. Cuadros-Rodríguez, L., Lazúen-Muros, M., Ruiz-Samblás, C., Navas-Iglesias, N. (2020). Leachables from plastic materials in contact with drugs. State of the art and review of current analytical approaches. International Journal of Pharmaceutics, 583, 119332. DOI: 10.1016/j.ijpharm.2020.119332
  6. Sawers, R.G. (2018). o-Phthalate derived from plastics’ plasticizers and a bacterium’s solution to its anaerobic degradation. Molecular Microbiology, 108(6), 595-600. DOI: 10.1111/mmi.13975
  7. Rigamonti, L., Grosso, M., Møller, J., Martinez Sanchez, V., Magnani, S., Christensen, T.H. (2014). Environmental evaluation of plastic waste management scenarios. Resources, Conservation and Recycling, 85, 42-53. DOI: 10.1016/j.resconrec.2013.12.012
  8. Kansanga, M.M., Ahmed, A., Kuusaana, E.D., Oteng-Ababio, M., Luginaah, I. (2020). Of waste facility siting and relational geographies of place: Peri-urban landfills, community resistance and the politics of land control in Ghana. Land Use Policy, 96, 104674. DOI: 10.1016/j.landusepol.2020.104674
  9. Weng, Y.-C., Fujiwara, T., Houng, H.J., Sun, C.-H., Li, W.-Y., Kuo, Y.-W. (2015). Management of landfill reclamation with regard to biodiversity preservation, global warming mitigation and landfill mining: experiences from the Asia–Pacific region. Journal of Cleaner Production, 104, 364-373. DOI: 10.1016/j.jclepro.2015.05.014
  10. Kumar, S., Aggarwal, S.G., Gupta, P.K., Kawamura, K. (2015). Investigation of the tracers for plastic-enriched waste burning aerosols. Atmospheric Environment, 108, 49-58. DOI: 10.1016/j.atmosenv.2015.02.066
  11. Krecl, P., de Lima, C.H., Bosco, T.C.D., Targino, A.C., Hashimoto, E.M., Oukawa, G.Y. (2021). Open waste burning causes fast and sharp changes in particulate concentrations in peripheral neighborhoods. Science of The Total Environment, 765, 142736. DOI: 10.1016/j.scitotenv.2020.142736
  12. Kumar, R., Verma, A., Shome, A., Sinha, R., Sinha, S., Jha, P.K., Kumar, R., Kumar, P., Shubham, Das, S., Sharma, P., Vara Prasad, P.V. (2021). Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability, 13(17), 9963. DOI: 10.3390/su13179963
  13. Ali, S.A., Ahmad, A. (2020). Suitability analysis for municipal landfill site selection using fuzzy analytic hierarchy process and geospatial technique. Environmental Earth Sciences, 79(10), 1-27. DOI: 10.1007/s12665-020-08970-z
  14. Rana, R., Ganguly, R., Gupta, A.K. (2018). Indexing method for assessment of pollution potential of leachate from non-engineered landfill sites and its effect on ground water quality. Environmental Monitoring and Assessment, 190(1), 46. DOI: 10.1007/s10661-017-6417-1
  15. Fudala-Ksiazek, S., Pierpaoli, M., Luczkiewicz, A. (2018). Efficiency of landfill leachate treatment in a MBR/UF system combined with NF, with a special focus on phthalates and bisphenol A removal. Waste Management, 78, 94-103. DOI: 10.1016/j.wasman.2018.05.012
  16. Qi, C., Huang, J., Wang, B., Deng, S., Wang, Y., Yu, G. (2018). Contaminants of emerging concern in landfill leachate in China: A review. Emerging Contaminants, 4(1), 1-10. DOI: 10.1016/j.emcon.2018.06.001
  17. Loppi, S., Roblin, B., Paoli, L., Aherne, J. (2021). Accumulation of airborne microplastics in lichens from a landfill dumping site (Italy). Scientific Reports, 11, 4564. DOI: 10.1038/s41598-021-84251-4
  18. Shah, S.K., Ahmad, I., Ishaq, M. (2017). Degradation study of used polystyrene with UV irradiation. Advanced Materials Science, 2(3), 1-6. DOI: 10.15761/AMS.1000130
  19. Thomas, R.T., Nair, V., Sandhyarani, N. (2013). TiO2 nanoparticle assisted solid phase photocatalytic degradation of polythene film: A mechanistic investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 422, 1-9. DOI: 10.1016/j.colsurfa.2013.01.017
  20. Nagy, A., Kuti, R. (2016). The Environmental Impact of Plastic Waste Incineration. Academic and Applied Research in Military and Public Management Science, 15(3), 231-237. DOI: 10.32565/aarms.2016.3.3
  21. Eriksson, O., Finnveden, G. (2009). Plastic waste as a fuel - CO2-neutral or not?. Energy & Environmental Science, 2(9), 907. DOI: 10.1039/B908135F
  22. Cimino, S., Ferone, C., Cioffi, R., Perillo, G., Lisi, L. (2019). A Case Study for the Deactivation and Regeneration of a V2O5-WO3/TiO2 Catalyst in a Tail-End SCR Unit of a Municipal Waste Incineration Plant. Catalysts, 9(5), 464. DOI: 10.3390/catal9050464
  23. Ho, Y.-A., Wang, S.-Y., Chiang, W.-H., Nguyen, V.-H., Chiu, J.-L., Wu, J.C.S. (2019). Moderate-temperature catalytic incineration of cooking oil fumes using hydrophobic honeycomb supported Pt/CNT catalyst. Journal of Hazardous Materials, 379, 120750. DOI: 10.1016/j.jhazmat.2019.120750
  24. Zagoruiko, A.N., Mokrinskii, V.V., Veniaminov, S.A., Noskov, A.S. (2017). On the performance stability of the MnOx/Al2O3 catalyst for VOC incineration under forced adsorption-catalytic cycling conditions. Journal of Environmental Chemical Engineering, 5(6), 5850-5856. DOI: 10.1016/j.jece.2017.11.019
  25. Li, C., Jiang, F., Sun, D., Qiu, B. (2017). Catalytic ozonation for advanced treatment of incineration leachate using (MnO2-Co3O4)/AC as a catalyst. Chemical Engineering Journal, 325, 624-631. DOI: 10.1016/j.cej.2017.05.124
  26. Makarichi, L., Jutidamrongphan, W., Techato, K. (2018). The evolution of waste-to-energy incineration: A review. Renewable and Sustainable Energy Reviews, 91, 812-821. DOI: 10.1016/j.rser.2018.04.088
  27. Aryan, Y., Yadav, P., Samadder, S.R. (2018). Life Cycle Assessment of the Existing and Proposed Plastic Waste Management Options in India: A Case Study. Journal of Cleaner Production, 211, 1268-1283. DOI: 10.1016/j.jclepro.2018.11.236
  28. Morris, J. (2005). Comparative LCAs for Curbside Recycling Versus Either Landfilling or Incineration with Energy Recovery. The International Journal of Life Cycle Assessment, 10(4), 273-284. DOI: 10.1065/lca2004.09.180.10
  29. Vazquez, Y.V., Barragan, F., Castillo, L.A., Barbosa, S.E. (2020). Analysis of the relationship between the amount and type of MSW and population socioeconomic level: Bahía Blanca case study, Argentina. Heliyon, 6(6), e04343. DOI: 10.1016/j.heliyon.2020.e04343
  30. Eriksen, M.K., Pivnenko, K., Olsson, M.E., Astrup, T.F. (2018). Contamination in plastic recycling: Influence of metals on the quality of reprocessed plastic. Waste Management, 79, 595-606. DOI: 10.1016/j.wasman.2018.08.007
  31. Demets, R., Roosen, M., Vandermeersch, L., Ragaert, K., Walgraeve, C., De Meester, S. (2020). Development and application of an analytical method to quantify odour removal in plastic waste recycling processes. Resources, Conservation and Recycling, 161, 104907. DOI: 10.1016/j.resconrec.2020.104907
  32. Jacob-Vaillancourt, C., Sorelli, L. (2018). Characterization of concrete composites with recycled plastic aggregates from postconsumer material streams. Construction and Building Materials, 182, 561-572. DOI: 10.1016/j.conbuildmat.2018.06.083
  33. Colombijn, F. (2020). Secrecy at the End of the Recycling Chain: The Recycling of Plastic Waste in Surabaya, Indonesia. Worldwide Waste: Journal of Interdisciplinary Studies, 3(1), 2. DOI: 10.5334/wwwj.43
  34. Abdel Tawab, O.F., Amin, M.R., Ibrahim, M.M., Abdel Wahab, M., Abd El Rahman, E.N., Hassanien, R.H., Hatem, M.H., Ghaly, A.E. (2020). Recycling Waste Plastic Bags as a Replacement for Cement in Production of Building Bricks and Concrete Blocks. Journal of Waste Resources and Recycling, 1(2), 202
  35. Senthil Kumar, K., Baskar, K. (2015). Recycling of E-plastic waste as a construction material in developing countries. Journal of Material Cycles and Waste Management, 17(4), 718-724. DOI: 10.1007/s10163-014-0303-5
  36. Panashe, J.A., Danyuo, Y. (2020). Recycling of plastic waste materials: mechanical properties and implications for road construction. MRS Advances, 1-8. DOI: 10.1557/adv.2020.197
  37. Appiah, J.K., Berko-Boateng, V.N., Tagbor, T.A. (2017). Use of waste plastic materials for road construction in Ghana. Case Studies in Construction Materials, 6, 1-7. DOI: 10.1016/j.cscm.2016.11.001
  38. Rajput, P.S., Yadav, R.K. (2016). Use of Plastic Waste in Bituminous Road Construction. International Journal of Science Technology & Engineering, 2(10), 92
  39. Liang, Y., Tan, Q., Song, Q., Li, J. (2021). An analysis of the plastic waste trade and management in Asia. Waste Management, 119, 242-253. DOI: 10.1016/j.wasman.2020.09.049
  40. Wang, Z., Huo, J., Duan, Y. (2020). The impact of government incentives and penalties on willingness to recycle plastic waste: An evolutionary game theory perspective. Frontiers of Environmental Science & Engineering, 14(2), 29. DOI: 10.1007/s11783-019-1208-2
  41. Pincelli, I.P., de Castilhos Junior, A.B., Matias, M.S., Rutkowski, E.W. (2021). Post-consumer plastic packaging waste flow analysis for Brazil: The challenges moving towards a circular economy. Waste Management, 126, 781-790. DOI: 10.1016/j.wasman.2021.04.005
  42. Saldana-Duran, C.E., Bernache-Pérez, G., Ojeda-Benitez, S., Cruz-Sotelo, S.E. (2020). Environmental pollution of E-waste: generation, collection, legislation, and recycling practices in Mexico. Handbook of Electronic Waste Management, 421-442. DOI: 10.1016/B978-0-12-817030-4.00021-8
  43. Ragaert, K., Huysveld, S., Vyncke, G., Hubo, S., Veelaert, L., Dewulf, J., Du Bois, E. (2020). Design from recycling: A complex mixed plastic waste case study. Resources, Conservation and Recycling, 155, 104646. DOI: 10.1016/j.resconrec.2019.104646
  44. Honingh, D., van Emmerik, T., Uijttewaal, W., Kardhana, H., Hoes, O., van de Giesen, N. (2020). Urban River Water Level Increase Through Plastic Waste Accumulation at a Rack Structure. Frontiers in Earth Science, 8, 28. DOI: 10.3389/feart.2020.00028
  45. Van Calcar, C.J., van Emmerik, T.H.M. (2019). Abundance of plastic debris across European and Asian rivers. Environmental Research Letters, 14(12), 124051. DOI: 10.1088/1748-9326/ab5468
  46. Deocaris, C.C., Allosada, J.O., Ardiente, L.T., Bitang, L.G.G., Dulohan, C.L., Lapuz, J.K.I., Padilla, L.M., Ramos, V.P., Padolina, J.B.P. (2019). Occurrence of microplastic fragments in the Pasig River. H2Open Journal, 2(1), 92-100. DOI: 10.2166/h2oj.2019.001
  47. Mihai, F.-C. (2018). Rural plastic emissions into the largest mountain lake of the Eastern Carpathians. Royal Society Open Science, 5(5), 172396. DOI: 10.1098/rsos.172396
  48. Barnes, D.K.A., Galgani, F., Thompson, R.C., Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985-1998. DOI: 10.1098/rstb.2008.0205
  49. Wilcox, C., Hardesty, B.D., Law, K.L. (2020). Abundance of Floating Plastic Particles Is Increasing in the Western North Atlantic Ocean. Environmental Science & Technology, 54, 790-796. DOI: 10.1021/acs.est.9b04812
  50. Lebreton, L.C.M., van der Zwet, J., Damsteeg, J.-W., Slat, B., Andrady, A., Reisser, J. (2017). River plastic emissions to the world’s oceans. Nature Communications, 8, 15611. DOI: 10.1038/ncomms15611
  51. Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771. DOI: 10.1126/science.126035
  52. Masry, M., Rossignol, S., Roussel, B.T., Bourgogne, D., Bussiere, P.-O., R’mili, B., Wong-Wah-Chung, P. (2021). Experimental evidence of plastic particles transfer at the water-air interface through bubble bursting. Environmental Pollution, 280, 116949. DOI: 10.1016/j.envpol.2021.116949
  53. Allen, S., Allen, D., Moss, K., Le Roux, G., Phoenix, V.R., Sonke, J.E. (2020). Examination of the ocean as a source for atmospheric microplastics. PLOS ONE, 15(5), e0232746. DOI: 10.1371/journal.pone.0232746
  54. Li, B., Su, L., Zhang, H., Deng, H., Chen, Q., Shi, H. (2020). Microplastics in fishes and their living environments surrounding aplastic production area. Science of the Total Environment, 727, 138662. DOI: 10.1016/j.scitotenv.2020.138662
  55. Smith, M., Love, D.C., Rochman, C.M., Neff, R.A. (2018). Microplastics in Seafood and the Implications for Human Health. Current Environmental Health Reports, 5, 375-386. DOI: 10.1007/s40572-018-0206-z
  56. Ogonowski, M., Gerdes, Z., Gorokhova, E. (2018). What we know and what we think we know about microplastic effects – A critical perspective. Current Opinion in Environmental Science & Health, 1, 41-46. DOI: 10.1016/j.coesh.2017.09.001
  57. Anbumani, S., Kakkar, P. (2018). Ecotoxicological effects of microplastics on biota: a review. Environmental Science and Pollution Research, 25(15), 14373-14396. DOI: 10.1007/s11356-018-1999-x
  58. Bhagat, J., Zang, L., Nishimura, N., Shimada, Y. (2020). Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. Science of The Total Environment, 728, 138707. DOI: 10.1016/j.scitotenv.2020.138707
  59. Ronkay, F., Molnar, B., Gere, D., Czigany, T. (2021). Plastic waste from marine environment: Demonstration of possible routes for recycling by different manufacturing technologies. Waste Management, 119, 101-110. DOI: 10.1016/j.wasman.2020.09.029
  60. Van Giezen, A., Wiegmans, B. (2020). Spoilt - Ocean Cleanup: Alternative logistics chains to accommodate plastic waste recycling: An economic evaluation. Transportation Research Interdisciplinary Perspectives, 5, 100115. DOI: 10.1016/j.trip.2020.100115
  61. Jiang, R., Lu, G., Yan, Z., Liu, J., Wu, D., Wang, Y. (2021). Microplastic degradation by hydroxy-rich bismuth oxychloride. Journal of Hazardous Materials, 405, 124247. DOI: 10.1016/j.jhazmat.2020.124247
  62. Li, F., Liu, Y., Wang, D., Zhang, C., Yang, Z., Lu, S., Wang, Y. (2018). Biodegradation of di-(2-ethylhexyl) phthalate by a halotolerant consortium LF. PLOS ONE, 13(10), e0204324. DOI: 10.1371/journal.pone.0204324
  63. Okpara, K.E., Phoungthong, K., Agbozu, I., Edwin-Isotu, E., Techato, K. (2022). Phthalate Esters in Tap Water, Southern Thailand: Daily Exposure and Cumulative Health Risk in Infants, Lactating Mothers, Pregnant and Nonpregnant Women. International Journal of Environmental Research and Public Health, 19, 2187. DOI: 10.3390/ijerph19042187
  64. Cao, Y., Li, J., Wu, R., Lin, H., Lao, J.-Y., Ruan, Y., Zhang, K., Wu, J., Leung, K.M.Y., Lam, P.K.S. (2022). Phthalate esters in seawater and sediment of the northern South China Sea: Occurrence, distribution, and ecological risks. Science of The Total Environment, 811, 151412. DOI: 10.1016/j.scitotenv.2021.151412
  65. Li, B., Hu, X., Liu, R., Zeng, P., Song, Y. (2015). Occurrence and distribution of phthalic acid esters and phenols in Hun River Watersheds. Environmental Earth Sciences, 73(9), 5095-5106. DOI: 10.1007/s12665-015-4299-5
  66. Wang, Y., Zhang, G., Wang, L. (2015). Potential Toxicity of Phthalic Acid Esters Plasticizer: Interaction of Dimethyl Phthalate with Trypsin in Vitro. Journal of Agricultural and Food Chemistry, 63(1), 75-84. DOI: 10.1021/jf5046359
  67. Huang, L., Zhu, X., Zhou, S., Cheng, Z., Shi, K., Zhang, C., Shao, H. (2021). Phthalic Acid Esters: Natural Sources and Biological Activities. Toxins, 13(7), 495. DOI: 10.3390/toxins13070495
  68. Pivnenko, K., Eriksen, M.K., Martín-Fernández, J.A., Eriksson, E., Astrup, T.F. (2016). Recycling of plastic waste: Presence of phthalates in plastics from households and industry. Waste Management, 54, 44-52. DOI: 10.1016/j.wasman.2016.05.014
  69. Ramzi, A., Gireeshkumar, T.R., Habeeb Rahman, K., Manu, M., Balachandran, K.K., Chacko, J., Chandramohanakumar, N. (2018). Distribution and contamination status of phthalic acid esters in the sediments of a tropical monsoonal estuary, Cochin – India. Chemosphere, 210, 232-238. DOI: 10.1016/j.chemosphere.2018.06.182
  70. Paluselli, A., Fauvelle, V., Galgani, F., Sempéré, R. (2018). Phthalate release from plastic fragments and degradation in seawater. Environmental Science & Technology, 53, 166-175. DOI: 10.1021/acs.est.8b05083
  71. Tun, T.Z., Kunisue, T., Tanabe, S., Prudente, M., Subramanian, A., Sudaryanto, A., Viet, P.H., Nakata, H. (2022). Microplastics in dumping site soils from six Asian countries as a source of plastic additives. Science of The Total Environment, 806, 150912. DOI: 10.1016/j.scitotenv.2021.150912
  72. Jebara, A., Albergamo, A., Rando, R., Potortì, A.G., Turco, V.L., Mansour, H.B., Di Bella, G. (2021). Phthalates and non-phthalate plasticizers in Tunisian marine samples: Occurrence, spatial distribution and seasonal variation. Marine Pollution Bulletin, 163, 111967. DOI: 10.1016/j.marpolbul.2021.111967
  73. Ramzi, A., Gireeshkumar, T.R., Habeeb Rahman, K., Manu, M., Balachandran, K.K., Chacko, J., Chandramohanakumar, N. (2018). Distribution and contamination status of phthalic acid esters in the sediments of a tropical monsoonal estuary, Cochin – India. Chemosphere, 210, 232-238. DOI: 10.1016/j.chemosphere.2018.06.182
  74. Gugliandolo, E., Licata, P., Crupi, R., Albergamo, A., Jebara, A., Lo Turco, V., Potorti, A.G., Ben Mansour, H., Cuzzocrea, S., Di Bella, G. (2020). Plasticizers as Microplastics Tracers in Tunisian Marine Environment. Frontiers in Marine Science, 7, 928. DOI: 10.3389/fmars.2020.589398
  75. Zhang, S., Zhang, W., Lin, L. (2021). Research progress on the removal of phthalic acid esters in water. E3S Web of Conferences, 261, 02041. DOI: 10.1051/e3sconf/202126102041
  76. Abtahi, M., Dobaradaran, S., Torabbeigi, M., Jorfi, S., Gholamnia, R., Koolivand, A., Darabi, H., Kavousi, A., Saeedi, R. (2019). Health risk of phthalates in water environment: Occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in tehran, Iran. Environmental Research, 173, 469-479. DOI: 10.1016/j.envres.2019.03.071
  77. Hassanzadeh, N., Esmaili Sari, A., Khodabandeh, S., Bahramifar, N. (2014). Occurrence and distribution of two phthalate esters in the sediments of the Anzali wetlands on the coast of the Caspian Sea (Iran). Marine Pollution Bulletin, 89(1-2), 128-135. DOI: 10.1016/j.marpolbul.2014.10.017
  78. Farooq, M.U., Jalees, M.I., Mian, H.R., Hussain, G., Iftikhar, S. (2016). Determination of phthalates leaching in open dumping site in suburban areas of Lahore (a case study). Science International (Lahore), 28(3), 3101-3104
  79. Selvaraj, K.K., Sundaramoorthy, G., Ravichandran, P.K., Girijan, G.K., Sampath, S., Ramaswamy, B.R. (2015). Phthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluations. Environmental geochemistry and health, 37(1), 83-96. DOI: 10.1007/s10653-014-9632-5
  80. Jayaweera, M., Danushika, G., Bandara, N., Dissanayake, J., Gunawardana, B., Manatunge, J., Zoysa, K. (2019). Urban Watercourses in Peril: Implications of Phthalic Acid Esters on Aquatic Ecosystems Caused by Urban Sprawl. Water, 11(3), 519. DOI: 10.3390/w11030519
  81. Syakti, A.D., Ahmed, M.M., Hidayati, N.V., Hilmi, E., Sulystyo, I., Piram, A., Doumenq, P. (2013). Screening of emerging pollutants in the mangrove of Segara Anakan Nature Reserve, Indonesia. IERI Procedia, 5, 216-222. DOI: 10.1016/j.ieri.2013.11.095
  82. Zeng, F., Cui, K., Xie, Z., Wu, L., Liu, M., Sun, G., Lin, Y., Luo, D., Zeng, Z. (2008). Phthalate esters (PAEs): Emerging organic contaminants in agricultural soils in peri-urban areas around Guangzhou, China. Environmental Pollution, 156(2), 425-434. DOI: 10.1016/j.envpol.2008.01.045
  83. Zeng, F., Cui, K., Xie, Z., Liu, M., Li, Y., Lin, Y., Zeng, Z., Li, F. (2008). Occurrence of phthalate esters in water and sediment of urban lakes in a subtropical city, Guangzhou, South China. Environment International, 34(3), 372-380. DOI: 10.1016/j.envint.2007.09.002
  84. Liu, Y., Chen, Z., Shen, J. (2013). Occurrence and Removal Characteristics of Phthalate Esters from Typical Water Sources in Northeast China. Journal of Analytical Methods in Chemistry, 2013, 1-8. DOI: 10.1155/2013/419349
  85. Lee, Y.M., Lee, J.E., Choe, W., Kim, T., Lee, J.Y., Kho, Y., Choi, K., Zoh, K.D. (2019). Distribution of phthalate esters in air, water, sediments, and fish in the Asan Lake of Korea. Environment International, 126, 635-643. DOI: 10.1016/j.envint.2019.02.059
  86. Chen, C.F., Chen, C.W., Chen, T.M., Ju, Y.R., Chang, Y.K., Dong, C.D. (2017). Phthalate ester distributions and its potential-biodegradation microbes in the sediments of Kaohsiung Ocean Dredged Material Disposal Site, Taiwan. International Biodeterioration & Biodegradation, 124, 233-242. DOI: 10.1016/j.ibiod.2017.05.002
  87. Le, T.M., Nguyen, H.M.N., Nguyen, V.K., Nguyen, A.V., Vu, N.D., Yen, N.T.H., Hoang, A.Q., Minh, T.B., Kannan, K., Tran, T.M. (2021). Profiles of phthalic acid esters (PAEs) in bottled water, tap water, lake water, and wastewater samples collected from Hanoi, Vietnam. Science of the Total Environment, 788, 147831. DOI: 10.1016/j.scitotenv.2021.147831
  88. Santhi, V.A., Mustafa, A.M. (2013). Assessment of organochlorine pesticides and plasticisers in the Selangor River basin and possible pollution sources. Environmental Monitoring and Assessment, 185, 1541-1554. DOI: 10.1007/s10661-012-2649-2
  89. Tan, G.H. (1995). Residue levels of phthalate esters in water and sediment samples from the Klang River basin. Bulletin of Environmental Contamination and Toxicology, 54(2), 171-176. DOI: 10.1007/bf00197427
  90. Psillakis, E., Mantzavinos, D., Kalogerakis, N. (2004). Monitoring the sonochemical degradation of phthalate esters in water using solid-phase microextraction. Chemosphere, 54(7), 849-857. DOI: 10.1016/j.chemosphere.2003.09.039
  91. Zeng, F., Cui, K., Xie, Z., Wu, L., Liu, M., Sun, G., Lin, Y., Luo, D., Zeng, Z. (2008). Phthalate esters (PAEs): Emerging organic contaminants in agricultural soils in peri-urban areas around Guangzhou, China. Environmental Pollution, 156(2), 425-434. DOI: 10.1016/j.envpol.2008.01.045
  92. Onyekwelu, I.L., Aghamelu, O.P. (2019). Impact of organic contaminants from dumpsite leachates on natural water sources in the Enugu Metropolis, southeastern Nigeria. Environment Monitoring and Assessment, 191, 543. DOI: 10.1007/s10661-019-7719-2
  93. Aziz, A., Agamuthu, P., Hassan, A., Auta, H.S., Fauziah, S.H. (2021). Green coagulant from Dillenia indica for removal of bis (2-ethylhexyl) phthalate and phenol, 4, 4’-(1-methylethylidene) bis-from landfill leachate. Environmental Technology & Innovation, 24, 102061. DOI: 10.1016/j.eti.2021.102061
  94. Wilk, B.K., Fudala-Ksiazek, S., Szopińska, M., Luczkiewicz, A. (2019). Landfill leachates and wastewater of maritime origin as possible sources of endocrine disruptors in municipal wastewater. Environmental Science and Pollution Research, 26(25), 25690-25701. DOI: 10.1007/s11356-019-05566-4
  95. Gao, X., Li, J., Wang, X., Zhou, J., Fan, B., Li, W. Liu, Z. (2019). Exposure and ecological risk of phthalate esters in the Taihu Lake basin, China. Ecotoxicology and Environmental Safety, 171, 564-570. DOI: 10.1016/j.ecoenv.2019.01.001
  96. Manzo, V., Becerra-Herrera, M., Arismendi, D., Molina-Balmaceda, A., Caraballo Monge, M.A., Richter, P. (2019). Rotating-disk sorptive extraction coupled to gas chromatography mass spectrometry for the determination of phthalates in bottled water. Analytical Methods, 11, 6111. DOI: 10.1039/C9AY02076D
  97. Zhang, C., Wang, Y. (2009). Removal of dissolved organic matter and phthalic acid esters from landfill leachate through a complexation–flocculation process. Waste Management, 29(1), 110-116. DOI: 10.1016/j.wasman.2008.02.023
  98. Zheng, Z., Zhang, H., He, P.-J., Shao, L.-M., Chen, Y., Pang, L. (2009). Co-removal of phthalic acid esters with dissolved organic matter from landfill leachate by coagulation and flocculation process. Chemosphere, 75(2), 180-186. DOI: 10.1016/j.chemosphere.2008.12.011
  99. Tümay Özer, E., Osman, B., Kara, A., Beşirli, N., Gücer, Ş., Sözeri, H. (2012). Removal of diethyl phthalate from aqueous phase using magnetic poly(EGDMA–VP) beads. Journal of Hazardous Materials, 229-230, 20-28. DOI: 10.1016/j.jhazmat.2012.05.037
  100. Meng, X., Niu, G., Yang, W., Cao, X. (2015). Di(2-ethylhexyl) phthalate biodegradation and denitrification by a Pseudoxanthomonas sp. strain. Bioresource Technology, 180, 356-359. DOI: 10.1016/j.biortech.2014.12.071
  101. Ren, L., Jia, Y., Ruth, N., Qiao, C., Wang, J., Zhao, B., Yan, Y. (2016). Biodegradation of phthalic acid esters by a newly isolated Mycobacterium sp. YC-RL4 and the bioprocess with environmental samples. Environmental Science and Pollution Research, 23(16), 16609-16619. DOI: 10.1007/s11356-016-6829-4
  102. Wang, J., Zhou, Y., Zhu, W., He, X. (2009). Catalytic ozonation of dimethyl phthalate and chlorination disinfection by-product precursors over Ru/AC. Journal of Hazardous Materials, 166(1), 502-507. DOI: 10.1016/j.jhazmat.2008.11.046
  103. Zhao, Y.J., Yan, C., Gu, D.H., He, J., Hou, H.Q (2013). Photolysis of dimethyl phthalate via microwave discharge electrodeless iodine lamp: parameters, feasibility and mechanism. Asian Journal of Chemistry, 25(14), 7888-7890
  104. Chen, C.Y. (2010). The Oxidation of Di-(2-Ethylhexyl) Phthalate (DEHP) in Aqueous Solution by UV/H2O2 Photolysis. Water Air Soil Pollution, 209, 411-417. DOI: 10.1007/s11270-009-0209-3
  105. Wen, G., Ma, J., Liu, Z.-Q., Zhao, L. (2011). Ozonation kinetics for the degradation of phthalate esters in water and the reduction of toxicity in the process of O3/H2O2. Journal of Hazardous Materials, 195, 371-377. DOI: 10.1016/j.jhazmat.2011.08.054
  106. Zhao, X.-K., Yang, G.-P., Wang, Y.-J., Gao, X.-C. (2004). Photochemical degradation of dimethyl phthalate by Fenton reagent. Journal of Photochemistry and Photobiology A: Chemistry, 161(2-3), 215-220. DOI: 10.1016/S1010-6030(03)00344-7
  107. Sin, J.-C., Lam, S.-M., Mohamed, A.R., Lee, K.-T. (2012). Degrading Endocrine Disrupting Chemicals from Wastewater by TiO2 Photocatalysis: A Review. International Journal of Photoenergy, 2012, 1-23. DOI: 10.1155/2012/185159
  108. Mahtab, M.S., Farooqi, I.H., Khursheed, A. (2022). Zero Fenton sludge discharge: a review on reuse approach during wastewater treatment by the advanced oxidation process. International Journal of Environmental Science and Technology, 19, 2265-2278. DOI: 10.1007/s13762-020-03121-0
  109. Ullah, I., Haider, A., Khalid, N., Ali, S., Ahmed, S., Khan, Y., Ahmed, N., Zubair, M. (2018). Tuning the band gap of TiO2 by tungsten doping for efficient UV and visible photodegradation of Congo red dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 204, 150-157. DOI: 10.1016/j.saa.2018.06.046
  110. Songara, J., Shanker, R., Singh, N.K. (2018). Transformation of benzyl butyl phthalate by Pseudomonas putida and photocatalytic ZnO nanoparticles. International Journal of Chemistry Studies, 6(4), 1334-1340
  111. Liu, Y., Sun, N., Hu, J., Li, S., Qin, G. (2018). Photocatalytic degradation properties of α-Fe2O3 nanoparticles for dibutyl phthalate in aqueous solution system. Royal Society Open Science, 5, 172196. DOI: 10.1098/rsos.172196
  112. Chuai, H., Zhou, D., Zhu, X., Li, Z., Huang, W. (2015). Characterization of V2O5/MoO3 composite photocatalysts prepared via electrospinning and their photodegradation activity for dimethyl phthalate. Chinese Journal of Catalysis, 36(12), 2194-2202. DOI: 10.1016/S1872-2067(15)61002-6
  113. Eslami, A., Saghi, M.H., Akbari-Adergani, B., Sadeghi, S., Ghaderpoori, M., Rabbani, M., Alinejad, A. (2021). Synthesis of modified ZnO nanorods and investigation of its application for removal of phthalate from landfill leachate: A case study in Aradkouh landfill site. Journal of Environmental Health Science and Engineering, 19(1), 133-142. DOI: 10.1007/s40201-020-00587-5
  114. Chung, YC., Chen, CY. (2009). Degradation of Di-(2-ethylhexyl) Phthalate (DEHP) by TiO2 Photocatalysis. Water, Air, and Soil Pollution, 200, 191-198. DOI: 10.1007/s11270-008-9903-9
  115. Salazar-Beltrán, D., Hinojosa-Reyes, L., Maya-Alejandro, F., Turnes-Palomino, G., Palomino-Cabello, C., Hernández-Ramírez, A. Guzmán-Mar, J.L., (2019). Automated on-line monitoring of the TiO2-based photocatalytic degradation of dimethyl phthalate and diethyl phthalate. Photochemical & Photobiological Sciences, 18, 863-870. DOI: 10.1039/c8pp00307f
  116. Madaoui, N., Bait, L., Kheyar, K., Saoula, N. (2017). Effect of Argon-Oxygen Mixing Gas during Magnetron Sputtering on TiO2 Coatings. Advances in Materials Science and Engineering, 2017, 1-6. DOI: 10.1155/2017/4926543
  117. Fujishima, A., Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38. DOI: 10.1038/238037a0
  118. Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W. (1995). Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 95(1), 69-96. DOI: 10.1021/cr00033a004
  119. Guo, Q., Zhou, C., Ma, Z., Yang, X. (2019). Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Advanced Materials, 1901997. DOI: 10.1002/adma.201901997
  120. Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., Bahnemann, D. W. (2014). Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114(19), 9919-9986. DOI: 10.1021/cr5001892
  121. Balati, A., Tek, S., Nash, K., Shipley, H. (2019). Nanoarchitecture of TiO2 microspheres with expanded lattice interlayers and its heterojunction to the laser modified black TiO2 using pulsed laser ablation in liquid with improved photocatalytic performance under visible light irradiation. Journal of Colloid and Interface Science, 541, 234-248. DOI: 10.1016/j.jcis.2019.01.082
  122. Petronella, F., Diomede, S., Fanizza, E., Mascolo, G., Sibillano, T., Agostiano, A., Curri, M.L., Comparelli, R. (2013). Photodegradation of nalidixic acid assisted by TiO2 nanorods/Ag nanoparticles based catalyst. Chemosphere, 91(7), 941-947. DOI: 10.1016/j.chemosphere.2013.01.107
  123. Wang, C., Zeng, T., Gu, C., Zhu, S., Zhang, Q., Luo, X. (2019). Photodegradation Pathways of Typical Phthalic Acid Esters Under UV, UV/TiO2, and UV-Vis/Bi2WO6 Systems. Frontiers in Chemistry, 7, 852. DOI: 10.3389/fchem.2019.00852
  124. Liao, W., Wang, P. (2009). Microwave-assisted Photocatalytic Degradation of Dimethyl Phthalate using a Microwave Discharged Electrodeless Lamp. Journal of the Brazilian Chemical Society, 20(5), 866-872. DOI: 10.1590/S0103-50532009000500010
  125. Tan, T.L., Lee, K.M., Lai, C.W., Hong, S.L., Rashid, S.A. (2020). Photocatalytic degradation mechanisms of dimethyl phthalate esters by MWCNTs-anatase TiO2 nanocomposites using the UHPLC/Orbitrap/MS technique. Advanced Powder Technology, 31(2), 533-547. DOI: 10.1016/j.apt.2019.11.010
  126. Jing, W.W., Li, D.Q., Li, J., Li, X.F., Wu, Z.H., Liu, Y.L. (2018). Photodegradation of dimethyl phthalate (DMP) by UV-TiO2 in aqueous solution: Operational parameters and kinetic analysis. International Journal of Environmental Science and Technology, 15(5), 969-976. DOI: 10.1007/s13762-017-1471-3
  127. Huang, Z., Wu, P., Lu, Y., Wang, X., Zhu, N., Dang, Z. (2013). Enhancement of photocatalytic degradation of dimethyl phthalate with nano-TiO2 immobilized onto hydrophobic layered double hydroxides: A mechanism study. Journal of Hazardous Materials, 246-247, 70-78. DOI: 10.1016/j.jhazmat.2012.12.016
  128. Jonsson, B., Baun, A. (2003). Toxicity of mono- and diesters of o-phthalic esters to a crustacean, a green alga, and a bacterium. Environmental Toxicology and Chemistry, 22(12), 3037. DOI: 10.1897/02-548
  129. Thambiliyagodage, C. (2021). Activity enhanced TiO2 nanomaterials for photodegradation of dyes – A review. Environmental Nanotechnology, Monitoring & Management, 16, 100592. DOI: 10.1016/j.enmm.2021.100592
  130. Kaneco, S., Katsumata, H., Suzuki, T., Ohta, K. (2006). Titanium dioxide mediated photocatalytic degradation of dibutyl phthalate in aqueous solution—kinetics, mineralization and reaction mechanism. Chemical Engineering Journal, 125(1), 59-66. DOI: 10.1016/j.cej.2006.08.004
  131. Xu, X.R., Li, S.X., Li, X.Y., Gu, J.D., Chen, F., Li, X.Z., Li, H.B. (2009). Degradation of n-butyl benzyl phthalate using TiO2/UV. Journal of Hazardous Materials, 164(2-3), 527-532. DOI: 10.1016/j.jhazmat.2008.08.027
  132. Jing, Y., Li, L., Zhang, Q., Lu, P., Liu, P., Lü, X. (2011). Photocatalytic ozonation of dimethyl phthalate with TiO2 prepared by a hydrothermal method. Journal of Hazardous Materials, 189(1-2), 40-47. DOI: 10.1016/j.jhazmat.2011.01.132
  133. Jing, W.W., Li, D.Q., Li, J., Li, X.F., Wu, Z.H., Liu, Y.L. (2018). Photodegradation of dimethyl phthalate (DMP) by UV–TiO2 in aqueous solution: operational parameters and kinetic analysis. International Journal of Environmental Science and Technology, 15(5), 969-976. DOI: 10.1007/s13762-017-1471-3
  134. Wang, C., Zeng, T., Gu, C., Zhu, S., Zhang, Q., Luo, X. (2019). Photodegradation pathways of typical phthalic acid esters under UV, UV/TiO2, and UV-Vis/Bi2WO6 systems. Frontiers in Chemistry, 7, 852. DOI: 10.3389/fchem.2019.00852
  135. Gu, X., Qin, N., Wei, G., Hu, Y., Zhang, Y.N., Zhao, G. (2021). Efficient photocatalytic removal of phthalates easily implemented over a bi-functional {001} TiO2 surface. Chemosphere, 263, 128257. DOI: 10.1016/j.chemosphere.2020.128257
  136. He, G., Zhang, J., Hu, Y., Bai, Z., Wei, C. (2019). Dual-template synthesis of mesoporous TiO2 nanotubes with structure-enhanced functional photocatalytic performance. Applied Catalysis B: Environmental, 250, 301-312. DOI: 10.1016/j.apcatb.2019.03.027
  137. Kaur, R., Singla, P., Singh, K. (2018). Transition metals (Mn, Ni, Co) doping in TiO2 nanoparticles and their effect on degradation of diethyl phthalate. International Journal of Environmental Science and Technology, 15(11), 2359-2368. DOI: 10.1007/s13762-017-1573-y
  138. Sathasivam, M., Aparna, R.S.L., Prasad, R.G.S.V., Cheok, K.Y. (2013). Photocatalytic Effect of Titanium Dioxide Nanoparticles and Effect of Copper as a Dopant in Degradation of Dibutyl Pthalate and Butylhydroxyanisole. Journal of Bionanoscience, 7(5), 568-574. DOI: 10.1166/jbns.2013.1186
  139. Singh, K., Singla, P., Pandey, O.P. (2017). Enhanced photocatalytic degradation of diethyl phthalate using Zn doped rutile TiO2. Indian Journal of Pure & Applied Physics (IJPAP), 55(10), 710-715
  140. Mohamed, R.M., Aazam, E. (2013). Synthesis and characterization of P-doped TiO2 thin-films for photocatalytic degradation of butyl benzyl phthalate under visible-light irradiation. Chinese Journal of Catalysis, 34(6), 1267-1273. DOI: 10.1016/S1872-2067(12)60572-5
  141. Wang, X.K., Wang, C., Jiang, W.Q., Guo, W.L., Wang, J.G. (2012). Sonochemical synthesis and characterization of Cl-doped TiO2 and its application in the photodegradation of phthalate ester under visible light irradiation. Chemical Engineering Journal, 189, 288-294. DOI: 10.1016/j.cej.2012.02.078
  142. Bai, S., Li, H., Guan, Y., Jiang, S. (2011). The enhanced photocatalytic activity of CdS/TiO2 nanocomposites by controlling CdS dispersion on TiO2 nanotubes. Applied Surface Science, 257(15), 6406-6409. DOI: 10.1016/j.apsusc.2011.02.007
  143. Ki, S.J., Park, Y.K., Kim, J.S., Lee, W.J., Lee, H., Jung, S.C. (2019). Facile preparation of tungsten oxide doped TiO2 photocatalysts using liquid phase plasma process for enhanced degradation of diethyl phthalate. Chemical Engineering Journal, 377, 120087. DOI: 10.1016/j.cej.2018.10.024
  144. Chalasani, R., Vasudevan, S. (2013). Cyclodextrin-functionalized Fe3O4@TiO2: reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies. ACS nano, 7(5), 4093-4104. DOI: 10.1021/nn400287k
  145. Chung, Y.-C., Chen, C.-Y. (2008). Degradation of Di-(2-ethylhexyl) Phthalate (DEHP) by TiO2 Photocatalysis. Water, Air, and Soil Pollution, 200(1-4), 191-198. DOI: 10.1007/s11270-008-9903-9
  146. Huang, W.-B., Chen, C.-Y. (2009). Photocatalytic Degradation of Diethyl Phthalate (DEP) in Water Using TiO2. Water, Air, and Soil Pollution, 207(1-4), 349-355. DOI: 10.1007/s11270-009-0141-6
  147. You, S., Hu, Y., Liu, X., Wei, C. (2018). Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light. Applied Catalysis B: Environmental, 232, 288-298. DOI: 10.1016/j.apcatb.2018.03.025
  148. Nguyen, D.-T., Ha, C.-A., Nguyen, T. (2020). Controlling Phase Composition, Properties and Activity of TiO2 Nano-Photocatalyst Synthesized by Hydrothermal Technique in the Degradation of Cinnamic Acid Solution. Journal of Nanoscience and Nanotechnology, 20(9), 5418-5425. DOI: 10.1166/jnn.2020.17886
  149. Sathiyan, K., Bar-Ziv, R., Mendelson, O., Zidki, T. (2020). Controllable Synthesis of TiO2 Nanoparticles and Their Photocatalytic Activity in Dye Degradation. Materials Research Bulletin, 126, 110842. DOI: 10.1016/j.materresbull.2020.110842
  150. Chandren, S., Ismail, K., Nur, H., Ohtani, B. (2017). Preparation of Titania on Stainless Steel by the Spray-ILGAR Technique as Active Photocatalyst under UV Light Irradiation for the Decomposition of Acetaldehyde. Applied Sciences, 7(7), 698. DOI: 10.3390/app7070698

Last update:

No citation recorded.

Last update:

No citation recorded.