skip to main content

Catalytic Dye Oxidation over CeO2 Nanoparticles Supported on Regenerated Cellulose Membrane

1School of Chemical Engineering, Hanoi University of Science and Technology, No.1 Dai Co Viet street, 10000 Hanoi, Viet Nam

2Advanced Institute for Science and Technology, Hanoi University of Science and Technology, No. 1 Dai Co Viet street, 10000 Hanoi, Viet Nam

Received: 3 Aug 2022; Revised: 29 Aug 2022; Accepted: 30 Aug 2022; Available online: 10 Sep 2022; Published: 30 Sep 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

A novel regenerated cellulose (RC) membrane containing cerium oxide (CeO2) nanoparticles is described in detail. In this work, CeO2 nanoparticles with high surface area and mesoporosity were prepared by a modified template-assisted precipitation method. Successful synthesis was achieved using cerium nitrate as a precursor, adjusting the final pH solution to around 11 by ammonium hydroxide and ethylene diamine, and annealing at 550 °C for 3 hours under a protective gas flow. This resulted in a surface area of 55.55 m².g–1 for the nanoparticles. The regenerated cellulose membrane containing CeO2 particles was synthesized by the novel and environmentally friendly method. The catalyst CeO2 and cellulose/CeO2 membrane were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Electron paramagnetic resonance (EPR), and Brunauer-Emmett-Teller (BET) measurements. The g-value of 2.276 has confirmed the presence of the surface superoxide species of CeO2 nanoparticles in EPR. The photocatalytic activity of the catalyst and the membrane containing the catalyst was evaluated through the degradation of methylene blue under visible light irradiation by UV-VIS measurements. The cellulose/CeO2 membrane degraded 80% of the methylene blue solution in 120 minutes, showing a better photocatalytic activity than the CeO2 catalyst, which degraded approximately 62% in the same period. It has been proven that the RC membrane is not only a good transparent supporting material but also a good adsorption for high-performance of CeO2 catalyst. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Cellulose Catalyst Membrane; CeO2 Nanoparticles; Regenerated Cellulose Membrane; Wastewater Treatment
Funding: German Academic Exchange Service (DAAD) under contract Kurita Asia Research Grant (21Pvn012-45R); Federal Ministry for Economic Cooperation and Development (BMZ)

Article Metrics:

  1. Bhatia, S.C. (2017). Pollution control in textile industry. New York: WPI Publishing
  2. Bhargava, D.A. (2016). Physico-Chemical Waste Water Treatment Technologies: An Overview. International Journal Of Scientific Research And Education, 4(5), 5308–5319. DOI: 10.18535/ijsre/v4i05.05
  3. Meriç, S., Selçuk, H., Belgiorno, V. (2005). Acute toxicity removal in textile finishing wastewater by Fenton’s oxidation, ozone and coagulation-flocculation processes. Water Research, 39(6), 1147–1153. DOI: 10.1016/j.watres.2004.12.021
  4. Abdel-Shafy, H.I., Mansour, M.S.M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123. DOI: 10.1016/j.ejpe.2015.03.011
  5. Butani, S.A., Mane, S.J. (2017). Coagulation / Flocculation Process for Cationic, Anionic Dye Removal Using Water Treatment Residuals – A Review. International Journal of Science Technology and Management, 6(4), 1–5
  6. Sharma, S., Ruparelia, J., Patel, M. (2011). A general review on advanced oxidation processes for waste water treatment. Institute of Technology Nirma University Ahmedabad, 481, 8–10
  7. Montini, T., Melchionna, M., Monai, M., Fornasiero, P. (2016). Fundamentals and Catalytic Applications of CeO2-Based Materials. Chemical Reviews, 116(10), 5987–6041. DOI: 10.1021/acs.chemrev.5b00603
  8. Zhang, S., Wang, H., Si, H., Jia, X., Wang, Z., Li, Q., Kong, J., Zhang, J. (2020). Novel Core-Shell (ϵ-MnO2/CeO2)@CeO2 Composite Catalyst with a Synergistic Effect for Efficient Formaldehyde Oxidation. ACS Applied Materials and Interfaces, 12(36), 40285–40295. DOI: 10.1021/acsami.0c09263
  9. Yuejuan, W., Jingmeng, M., Mengfei, L., Ping, F., Mai, H. (2007). Preparation of High-Surface Area Nano-CeO2 by Template-Assisted Precipitation Method. Journal of Rare Earths, 25(1), 58–62. DOI: 10.1016/S1002-0721(07)60045-3
  10. Thuy, T.T., Hoste, S., Herman, G.G., Van de Velde, N., De Buysser, K., Van Driessche, I. (2009). Novel water based cerium acetate precursor solution for the deposition of epitaxial cerium oxide films as HTSC buffers. Journal of Sol-Gel Science and Technology, 51(1), 112–118. DOI: 10.1007/s10971-009-1949-7
  11. Thuy, T.T., Lommens, P., Narayanan, V., Van de Velde, N., De Buysser, K., Herman, G.G., Cloet, V., Van Driessche, I. (2010). A nitrilo-tri-acetic-acid/acetic acid route for the deposition of epitaxial cerium oxide films as high temperature superconductor buffer layers. Journal of Solid State Chemistry, 183(9), 2154–2160. DOI: 10.1016/j.jssc.2010.07.009
  12. Fauzi, A.A., Jalil, A.A., Hassan, N.S., Aziz, F.F.A., Azami, M.S., Hussain, I., Saravanan, R., Vo, D.-V.N. (2022). A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant. Chemosphere, 286, 131651. DOI: 10.1016/j.chemosphere.2021.131651
  13. Franz, S., Perego, D., Marchese, O., Bestetti, M. (2015). Photoelectrochemical advanced oxidation processes on nanostructured TiO2 catalysts: Decolorization of a textile azo-dye. Journal of Water Chemistry and Technology, 37(3), 108–115. DOI: 10.3103/S1063455X15030029
  14. Zheng, X., Shen, Z.P., Shi, L., Cheng, R., Yuan, D.H. (2017). Photocatalytic membrane reactors (PMRs) in water treatment: Configurations and influencing factors. Catalysts, 7(8), 224. DOI: 10.3390/catal7080224
  15. Yuliwati, E., Ismail, A.F. (2011). Effect of additives concentration on the surface properties and performance of PVDF ultrafiltration membranes for refinery produced wastewater treatment. Desalination, 273(1), 226–234. DOI: 10.1016/j.desal.2010.11.023
  16. Liu, F., Hashim, N.A., Liu, Y., Abed, M.R.M., Li, K. (2011). Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 375(1–2), 1–27. DOI: 10.1016/j.memsci.2011.03.014
  17. Saljoughi, E., Mousavi, S.M. (2012). Preparation and characterization of novel polysulfone nanofiltration membranes for removal of cadmium from contaminated water. Separation and Purification Technology, 90, 22–30. DOI: 10.1016/j.seppur.2012.02.008
  18. Ahmad, A.L., Abdulkarim, A.A., Ooi, B.S., Ismail, S. (2013). Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chemical Engineering Journal, 223, 246–267. DOI: 10.1016/j.cej.2013.02.130
  19. Lohokare, H.R., Muthu, M.R., Agarwal, G.P., Kharul, U.K. (2008). Effective arsenic removal using polyacrylonitrile-based ultrafiltration (UF) membrane. Journal of Membrane Science, 320(1–2), 159–166. DOI: 10.1016/j.memsci.2008.03.068
  20. Han, Y., Xu, Z., Gao, C. (2013). Ultrathin graphene nanofiltration membrane for water purification. Advanced Functional Materials, 23(29), 3693–3700. DOI: 10.1002/adfm.201202601
  21. Kim, J., Suh, D., Kim, C., Baek, Y., Lee, B., Kim, H.J., Lee, J.C., Yoon, J. (2016). A high-performance and fouling resistant thin-film composite membrane prepared via coating TiO2 nanoparticles by sol-gel-derived spray method for PRO applications. Desalination, 397, 157–164. DOI: 10.1016/j.desal.2016.07.002
  22. Sokhandan, F., Homayoonfal, M., Davar, F. (2020). Application of zinc oxide and sodium alginate for biofouling mitigation in a membrane bioreactor treating urban wastewater. Biofouling, 36(6), 660–678. DOI: 10.1080/08927014.2020.1798934
  23. Méricq, J.P., Mendret, J., Brosillon, S., Faur, C. (2015). High performance PVDF-TiO2 membranes for water treatment. Chemical Engineering Science, 123, 283–291. DOI: 10.1016/j.ces.2014.10.047
  24. Nguyen, M.N., Kragl, U., Barke, I., Lange, R., Lund, H., Frank, M., Springer, A., Aladin, V., Corzilius, B., Hollmann, D. (2020). Coagulation using organic carbonates opens up a sustainable route towards regenerated cellulose films. Communications Chemistry, 3(1), 116. DOI: 10.1038/s42004-020-00360-7
  25. Wittmar, A., Thierfeld, H., Köcher, S., Ulbricht, M. (2015). Routes towards catalytically active TiO2 doped porous cellulose. RSC Advances, 5(45), 35866–35873. DOI: 10.1039/c5ra03707g
  26. Xu, J., Li, G., Li, L. (2008). CeO2 nanocrystals: Seed-mediated synthesis and size control. Materials Research Bulletin, 43(4), 990–995. DOI: 10.1016/j.materresbull.2007.04.019
  27. Jiang, H., Rinke, P., Scheffler, M. (2012). Electronic properties of lanthanide oxides from the GW perspective. Physical Review B - Condensed Matter and Materials Physics, 86(12), 125115. DOI: 10.1103/PhysRevB.86.125115
  28. Wang, Y., Zhao, J., Wang, T., Li, Y., Li, X., Yin, J., Wang, C. (2016). CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: Surface species and their reactivity. Journal of Catalysis, 337, 293–302. DOI: 10.1016/j.jcat.2015.12.030
  29. Majumder, D., Chakraborty, I., Mandal, K., Roy, S. (2019). Facet-Dependent Photodegradation of Methylene Blue Using Pristine CeO2 Nanostructures. ACS Omega, 4(2), 4243–4251. DOI: 10.1021/acsomega.8b03298

Last update:

No citation recorded.

Last update:

No citation recorded.