skip to main content

Catalytic Oxidative Desulfurization of Dibenzothiophene Utilizing Composite Based Zn/Al Layered Double Hydroxide

1Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia

2Research Centre of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia

3Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia

Received: 27 Jul 2022; Revised: 9 Oct 2022; Accepted: 10 Oct 2022; Available online: 11 Oct 2022; Published: 25 Dec 2022.
Editor(s): Bunjerd Jongsomjit
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

In this study, the Zn/Al-TiO2 and Zn/Al-ZnO was successfully synthesized. The catalysts were characterized by X-ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscope—Energy Dispersive X-ray Spectroscopy (SEM-EDS). The typical diffraction peaks of Zn/Al-LDH, TiO2, and ZnO still appear in the Zn/Al-TiO2 and Zn/Al-ZnO composites, indicating that the composite preparation did not change the form of precursors. FTIR spectra of Zn/Al-TiO2 and Zn/Al-ZnO showed absorption band at 3448, 1627, 1381, 832, 779, and 686 cm-1. The catalysts have an irregular structure where the percent mass of Ti and Zn on the composite at 10.6% and 55.6%, respectively. The acidity of Zn/Al-LDH composite increased after being composed with TiO2 and ZnO. The percentage conversion dibenzothiophene on Zn/Al-ZnO, Zn/Al-TiO2, ZnO, Zn/Al-LDH, and TiO2 was 99.38%, 96.01%, 95.36%, 94.71%, and 91.92%, respectively. The heterogeneous systems of catalytic reaction was used for reusability. After 3 cycles catalytic reactions at 50 oC for 30 min, the percentage conversion of dibenzothiophene on Zn/Al-LDH, TiO2, ZnO, Zn/Al-TiO2, and Zn/Al-ZnO were 77.42%, 83.19%, 82.34%, 84.91%, and 89.71 %, respectively. The composites of Zn/Al-TiO2 and Zn/Al-ZnO have better reusability test than Zn/Al-LDH, TiO2, and ZnO, which proofing that Zn/Al-TiO2 and Zn/Al-ZnO have a stable structure. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (


Fulltext View|Download
Keywords: oxidative desulfurization; dibenzothiophene; Zn/Al; layered double hydroxide
Funding: Universitas Sriwijaya under contract Hibah Profesi SIP DIPA- No. 0111/UN9.3.1/SK/2022

Article Metrics:

  1. Yang, H., Jiang, B., Sun, Y., Tantai, X., Xiao, X., Wang, J., Zhang, L. (2018). Construction of polyoxometallate-based organic-inorganic hybrid nanowires for efficient oxidative desulfurization. Molecular Catalysis, 448, 38–45. DOI: 10.1016/j.mcat.2018.01.016
  2. Mousavi-Kamazani, M., Ghodrati, M., Rahmatolahzadeh, R. (2020). Fabrication of Z-scheme flower-like AgI/Bi2O3 heterojunctions with enhanced visible light photocatalytic desulfurization under mild conditions. Journal of Materials Science: Materials in Electronics, 31. DOI: 10.1007/s10854-020-03129-9
  3. Mahmoudi, V., Mojaverian Kermani, A., Ghahramaninezhad, M., Ahmadpour, A. (2021). Oxidative desulfurization of dibenzothiophene by magnetically recoverable polyoxometalate-based nanocatalyst: Optimization by response surface methodology. Molecular Catalysis, 509 DOI: 10.1016/j.mcat.2021.111611
  4. Wang, D., Liu, N., Zhang, J., Zhao, X., Zhang, W., Zhang, M. (2014). Oxidative desulfurization using ordered mesoporous silicas as catalysts. Journal of Molecular Catalysis A: Chemical, 393, 47–55. DOI: 10.1016/j.molcata.2014.05.026
  5. Abedini, F., Allahyari, S., Rahemi, N. (2021). Oxidative desulfurization of dibenzothiophene and simultaneous adsorption of products on BiOBr-C3N4/MCM-41 visible-light-driven core–shell nano photocatalyst. Applied Surface Science, 569 DOI: 10.1016/j.apsusc.2021.151086
  6. Tran, D.T., Palomino, J.M., Oliver, S.R.J. (2018). Desulfurization of JP-8 jet fuel: challenges and adsorptive materials.
  7. Rezaee, M., Feyzi, F., Dehghani, M.R. (2021). Extractive desulfurization of dibenzothiophene from normal octane using deep eutectic solvents as extracting agent. Journal of Molecular Liquids, 333, 115991. DOI: 10.1016/j.molliq.2021.115991
  8. Malani, R.S., Batghare, A.H., Bhasarkar, J.B., Moholkar, V.S. (2021). Kinetic modelling and process engineering aspects of biodesulfurization of liquid fuels: Review and analysis. Bioresource Technology Reports, 14(January), 100668. DOI: 10.1016/j.biteb.2021.100668
  9. Mgidlana, S., Nyokong, T. (2021). Photocatalytic desulfurization of dibenzothiophene using asymmetrical zinc(II) phthalocyanines conjugated to silver-magnetic nanoparticles. Inorganica Chimica Acta, 514 DOI: 10.1016/j.ica.2020.119970
  10. Subhan, S., Ur Rahman, A., Yaseen, M., Ur Rashid, H., Ishaq, M., Sahibzada, M., Tong, Z. (2019). Ultra-fast and highly efficient catalytic oxidative desulfurization of dibenzothiophene at ambient temperature over low Mn loaded Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts using NaClO as oxidant. Fuel, 237, 793–805. DOI: 10.1016/j.fuel.2018.10.067
  11. Mohadi, R., Teresia, L., Fithri, N.A., Lesbani, A., Hidayati, N. (2016). Oxidative desulfurization of dibenzothiophene using dawson type heteropoly compounds/tantalum as catalyst. Indonesian Journal of Chemistry, 16(1), 105–110. DOI: 10.22146/ijc.21185
  12. Ali, M.F., Al-Malki, A., Ahmed, S. (2009). Chemical desulfurization of petroleum fractions for ultra-low sulfur fuels. Fuel Processing Technology, 90(4), 536–544. DOI: 10.1016/j.fuproc.2009.01.005
  13. Javadli, R., de Klerk, A. (2012). Desulfurization of heavy oil-oxidative desulfurization (ODS) as potential upgrading pathway for oil sands derived bitumen. Energy and Fuels. 26 (1), 594–602. DOI: 10.1021/ef201448d
  14. Sikarwar, P., Kumar, U.K.A., Gosu, V., Subbaramaiah, V. (2018). Catalytic oxidative desulfurization of DBT using green catalyst (Mo/MCM-41) derived from coal fly ash. Journal of Environmental Chemical Engineering, 6(2), 1736–1744. DOI: 10.1016/j.jece.2018.02.021
  15. Teimouri, A., Mahmoudsalehi, M., Salavati, H. (2018). Catalytic oxidative desulfurization of dibenzothiophene utilizing molybdenum and vanadium oxides supported on MCM-41. International Journal of Hydrogen Energy, 43(31), 14816–14833. DOI: 10.1016/j.ijhydene.2018.05.102
  16. Naseri, H., Mazloom, G., Akbari, A., Banisharif, F. (2021). Investigation of Ni, Co, and Zn promoters in on Mo/HY modified zeolite for developing an efficient bimetallic catalyst for oxidative desulfurization of dibenzothiophene. Microporous and Mesoporous Materials, 325 DOI: 10.1016/j.micromeso.2021.111341
  17. Palapa, N.R., Taher, T., Wijaya, A., Lesbani, A. (2021). Modification of cu/cr layered double hydroxide by keggin type polyoxometalate as adsorbent of malachite green from aqueous solution. Science and Technology Indonesia, 6(3), 209–217. DOI: 10.26554/sti.2021.6.3.209-217
  18. Karim, A. v., Hassani, A., Eghbali, P., Nidheesh, P.V. (2022). Nanostructured modified layered double hydroxides (LDHs)-based catalysts: A review on synthesis, characterization, and applications in water remediation by advanced oxidation processes. Current Opinion in Solid State and Materials Science, 26(1), 100965. DOI: 10.1016/j.cossms.2021.100965
  19. Zhu, Y., Yang, M., Zhang, Z., An, Z., Zhang, J., Shu, X., He, J. (2021). NiCu bimetallic catalysts derived from layered double hydroxides for hydroconversion of n-heptane. Chinese Chemical Letters, 33(4), 2069-2072. DOI: 10.1016/j.cclet.2021.08.120
  20. Gabriel, R., Carvalho, S.H.V. de, Duarte, J.L. da S., Oliveira, L.M.T.M., Giannakoudakis, D.A., Triantafyllidis, K.S., Soletti, J.I., Meili, L. (2022). Mixed metal oxides derived from layered double hydroxide as catalysts for biodiesel production. Applied Catalysis A: General, 630, 118470. DOI: 10.1016/j.apcata.2021.118470
  21. Wijaya, A., Siregar, P.M.S.B.N., Priambodo, A., Palapa, N.R., Taher, T., Lesbani, A. (2021). Innovative Modified of Cu-Al/C (C = Biochar, Graphite) Composites for Removal of Procion Red from Aqueous Solution. Science and Technology Indonesia, 6(4) DOI: 10.26554/sti.2021.6.4.228-234
  22. Dubnová, L., Smoláková, L., Kikhtyanin, O., Kocík, J., Kubička, D., Zvolská, M., Pouzar, M., Čapek, L. (2021). The role of ZnO in the catalytic behaviour of Zn-Al mixed oxides in aldol condensation of furfural with acetone. Catalysis Today, 379, 181–191. DOI: 10.1016/j.cattod.2020.09.011
  23. Elhalil, A., Elmoubarki, R., Machrouhi, A., Sadiq, M., Abdennouri, M., Qourzal, S., Barka, N. (2017). Photocatalytic degradation of caffeine by ZnO-ZnAl2O4 nanoparticles derived from LDH structure. Journal of Environmental Chemical Engineering, 5(4), 3719–3726. DOI: 10.1016/j.jece.2017.07.037
  24. Wang, A.Q., Wang, J.X., Wang, H., Huang, Y.N., Xu, M.L., Wu, X.L. (2017). Synthesis of SO42−/TiO2-ZnAl2O4 composite solid acids as the esterification catalysts. RSC Advances, 7(23), 14224–14232. DOI: 10.1039/c7ra01386h
  25. Yuliasari, N., Wijaya, A., Mohadi, R., Elfita, E., Lesbani, A. (2022). Photocatalytic Degradation of Malachite Green by Layered Double Hydroxide Based Composites. Bulletin of Chemical Reaction Engineering & Catalysis, 17(2), 240–249. DOI: 10.9767/bcrec.17.2.13482.240-249
  26. Szabados, M., Bús, C., Ádok-Sipiczki, M., Kónya, Z., Kukovecz, Sipos, P., Pálinkó, I. (2016). Ultrasound-enhanced milling in the synthesis of phase-pure, highly crystalline ZnAl-layered double hydroxide of low Zn(II) content. Particuology, 27(May), 29–33. DOI: 10.1016/j.partic.2016.01.006
  27. Xie, J., Yamaguchi, T., Oh, J.M. (2021). Synthesis of a mesoporous Mg–Al–mixed metal oxide with P123 template for effective removal of Congo red via aggregation-driven adsorption. Journal of Solid State Chemistry, 293(July 2020), 121758. DOI: 10.1016/j.jssc.2020.121758
  28. Basnet, P., Samanta, D., Inakhunbi Chanu, T., Mukherjee, J., Chatterjee, S. (2019). Assessment of synthesis approaches for tuning the photocatalytic property of ZnO nanoparticles. SN Applied Sciences, 1(6) DOI: 10.1007/s42452-019-0642-x
  29. Normah, Palapa, N.R., Taher, T., Mohadi, R., Utami, H.P., Lesbani, A. (2021). The ability of composite ni/al-carbon based material toward readsorption of iron(II) in aqueous solution. Science and Technology Indonesia, 6(3), 156–165. DOI: 10.26554/sti.2021.6.3.156-165
  30. Lv, H., Rao, H., Liu, Z., Zhou, Z., Zhao, Y., Wei, H., Chen, Z. (2022). NiAl layered double hydroxides with enhanced interlayer spacing via ion-exchange as ultra-high performance supercapacitors electrode materials. Journal of Energy Storage, 52 DOI: 10.1016/j.est.2022.104940
  31. Intachai, S., Nakato, T., Khaorapapong, N. (2021). ZnO decorated on low carbonate NiAl-layered double hydroxide as efficient photocatalyst for methyl orange degradation. Applied Clay Science, 201 DOI: 10.1016/j.clay.2020.105927
  32. Trisunaryanti, W., Sumbogo, S.D., Novianti, S.A., Fatmawati, D.A., Ulfa, M., Nikmah, Y.L. (2021). ZnO-activated carbon blended as a catalyst for oxidative desulfurization of dibenzothiophene. Bulletin of Chemical Reaction Engineering & Catalysis, 16(4), 881–887. DOI: 10.9767/BCREC.16.4.11797.881-887
  33. Ahmad, N., Wijaya, A., Salasia Fitri, E., Suryani Arsyad, F., Mohadi, R., Lesbani, A. (2022). Catalytic Oxidative Desulfurization of Dibenzothiophene by Composites Based Ni/Al-Oxide, Science and Technology Indonesia, 7(3), 385-391. DOI: 10.26554/sti.2022.7.3.385-391
  34. Ja’fari, M., Ebrahimi, S.L., Khosravi-Nikou, M.R. (2018). Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels: A critical review. Ultrason. Sonochem. 40, 955–968. DOI: 10.1016/j.ultsonch.2017.09.002
  35. Song, Y., Bai, J., Jiang, S., Yang, H., Yang, L., Wei, D., Bai, L., Wang, W., Liang, Y., Chen, H. (2021). Co-Fe-Mo mixed metal oxides derived from layered double hydroxides for deep aerobic oxidative desulfurization. Fuel, 306, 121751. DOI: 10.1016/j.fuel.2021.121751
  36. Muhammad, Y., Shoukat, A., Rahman, A.U., Rashid, H.U., Ahmad, W. (2018). Oxidative desulfurization of dibenzothiophene over Fe promoted Co–Mo/Al2O3 and Ni–Mo/Al2O3 catalysts using hydrogen peroxide and formic acid as oxidants. Chinese Journal of Chemical Engineering, 26(3), 593–600. DOI: 10.1016/j.cjche.2017.05.015
  37. Xie, D., He, Q., Su, Y., Wang, T., Xu, R., Hu, B. (2015). Oxidative desulfurization of dibenzothiophene catalyzed by peroxotungstate on functionalized MCM-41 materials using hydrogen peroxide as oxidant. Cuihua Xuebao/Chinese Journal of Catalysis, 36(8), 1205–1213. DOI: 10.1016/S1872-2067(15)60897-X
  38. Lesbani, A., Agnes, A., Saragih, R.O., Verawaty, M., Mohadi, R., Zulkifli, H. (2015). Facile oxidative desulfurisation of benzothiophene using polyoxometalate H4[α-SiW12O40]/Zr catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 10(2), 185–191. DOI: 10.9767/bcrec.10.2.7734.185-191
  39. Akopyan, A.v., Plotnikov, D.A., Polikarpova, P.D., Kedalo, A.A., Egazar’yants, S.v., Anisimov, A.v., Karakhanov, E.A. (2019). Deep Purification of Vacuum Gas Oil by the Method of Oxidative Desulfurization. Petroleum Chemistry, 59(9), 975–978. DOI: 10.1134/S0965544119090019
  40. Kumar, S., Srivastava, V.C., Badoni, R.P. (2012). Oxidative desulfurization by chromium promoted sulfated zirconia. Fuel Processing Technology, 93(1), 18–25. DOI: 10.1016/j.fuproc.2011.08.017
  41. Qiu, L., Cheng, Y., Yang, C., Zeng, G., Long, Z., Wei, S., Zhao, K., Luo, L. (2016). Oxidative desulfurization of dibenzothiophene using a catalyst of molybdenum supported on modified medicinal stone. RSC Advances, 6(21), 17036–17045. DOI: 10.1039/c5ra23077b
  42. Jiang, W., Dong, L., Liu, W., Guo, T., Li, H., Zhang, M., Zhu, W., Li, H. (2017). Designing multifunctional SO3H-based polyoxometalate catalysts for oxidative desulfurization in acid deep eutectic solvents. RSC Advances, 7(87), 55318–55325. DOI: 10.1039/c7ra10125b
  43. Cao, Y., Wang, H., Ding, R., Wang, L., Liu, Z., Lv, B. (2020). Highly efficient oxidative desulfurization of dibenzothiophene using Ni modified MoO3 catalyst. Applied Catalysis A: General, 589, 117308. DOI: 10.1016/j.apcata.2019.117308
  44. Ye, J., Wen, J., Zhao, D., Zhang, P., Li, A., Zhang, L., Zhang, H., Wu, M. (2020). Macroporous 3D carbon-nitrogen (CN) confined MoOx catalyst for enhanced oxidative desulfurization of dibenzothiophene. Chinese Chemical Letters, 31(10), 2819–2824. DOI: 10.1016/j.cclet.2020.08.004
  45. Houda, S., Lancelot, C., Blanchard, P., Poinel, L., Lamonier, C. (2018). Catalysts Oxidative Desulfurization of Heavy Oils with High Sulfur Content: A Review. Catalysts, 2018, 8(9), 344. DOI: 10.3390/catal8090344
  46. Polikarpova, P., Akopyan, A., Shlenova, A., Anisimov, A. (2020). New mesoporous catalysts with Brønsted acid sites for deep oxidative desulfurization of model fuels. Catalysis Communications, 146, 106123. DOI: 10.1016/j.catcom.2020.106123
  47. Jiang, W., Zheng, D., Xun, S., Qin, Y., Lu, Q., Zhu, W., Li, H. (2017). Polyoxometalate-based ionic liquid supported on graphite carbon induced solvent-free ultra-deep oxidative desulfurization of model fuels. Fuel, 190, 1–9. DOI: 10.1016/j.fuel.2016.11.024
  48. Ribeiro, S.O., Granadeiro, C.M., Almeida, P.L., Pires, J., Capel-Sanchez, M.C., Campos-Martin, J.M., Gago, S., de Castro, B., Balula, S.S. (2019). Oxidative desulfurization strategies using Keggin-type polyoxometalate catalysts: Biphasic versus solvent-free systems. Catalysis Today, 333, 226–236. DOI: 10.1016/j.cattod.2018.10.046

Last update:

No citation recorded.

Last update:

No citation recorded.