skip to main content

Comparative Adsorption Performance of Carbon-containing Hydroxyapatite Derived Tenggiri (Scomberomorini) and Belida (Chitala) Fish Bone for Methylene Blue

1Department of Chemical Education, Universitas Mulawarman, Kampus Gunung Kelua, Samarinda, 75119, East Kalimantan, Indonesia

2School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900 , Malaysia

3College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 , China

4 Kelip-kelip! Center of Excellence for Light Enabling Technologies, School of Energy and Chemical Engineering, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia

5 Department of Chemistry, Universitas Negeri Malang, Malang 65145, Indonesia

6 Center of Advanced Materials for Renewable Energy (CAMRY), Universitas Negeri Malang, Jl. Semarang No. 5, Malang 65145, Indonesia

View all affiliations
Received: 24 Jul 2022; Revised: 31 Aug 2022; Accepted: 1 Sep 2022; Available online: 10 Sep 2022; Published: 30 Sep 2022.
Editor(s): Istadi Istadi
Open Access Copyright (c) 2022 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

The utilization of fishbone as the carbon source for methylene blue adsorption has been successfully studied. Fishbone was prepared from two kinds of fish such as marine fisheries (ex. Tenggiri) and freshwater fisheries (ex. Belida). The carbons were prepared by carbonation of fishbone powder at  500 °C for 2 h. Physical properties of carbons were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), wavelength dispersive X-ray fluorescence (WDXRF), Scanning Electron Microscope (SEM), and hydrophobicity. The carbons were utilized as the adsorbent for removing methylene blue by varying the contact time, initial dye concentration, and temperature. It is concluded that both carbons can very good adsorb the methylene blue. The adsorption performance of carbon (TFC) from Tenggiri fish is better than carbon (BFC) from Belida fish. The adsorption was well fitted with the Langmuir adsorption model (R2 ~ 0.998) and the pseudo-second-order model. This indicated that the dye molecules were adsorbed on the surface-active site of carbon via chemical binding, forming an adsorbate monolayer. Thermodynamic parameters, including the Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS), indicated that the adsorption of methylene blue onto the carbon from fishbone was spontaneous. Thus, carbon from fishbone can be applied as a low-cost adsorbent to treat industrial effluents contaminated with methylene blue. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

 

Fulltext View|Download
Keywords: Fishbone; carbon; methylene blue; carbonization; adsorption
Funding: Fakultas Keguruan dan Ilmu Pendidikan, Universitas Mulawarman under contract 800/UN17.5/PG/2022; Kementerian Pendidikan, Kebudayaan, Riset dan Teknologi, Republic of Indonesia under contract 297/UN17.L1/HK/2022

Article Metrics:

  1. Karaoglu, M.H., Dogan, M., Alkan, M. (2010). Removal of Reactive Blue 221 by Kaolinite from Aqueous Solution. Industrial & Engineering Chemistry Research, 49(4), 1534–1540. DOI: 10.1021/ie9017258
  2. Kumar, P.S., Ramalingam, S., Sathishkumar, K. (2011). Removal of methylene blue dye from aqueous solution by activated carbon prepared from cashew nut shell as a new low-cost adsorbent. Korean Journal of Chemical Engineering, 28, 149–155. DOI: 10.1007/s11814-010-0342-0
  3. Yi, J.-Z., Zhang, L.-M. (2008). Removal of methylene blue dye from aqueous solution by adsorption onto sodium humate/polycrylamide/cly hybrid hydrogels. Bioresource Technology, 99, 2182–2186. DOI: 10.1016/j.biortech.2007.05.028
  4. Danish, M., Ahmad, T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews, 87, 1–21. DOI: 10.1016/j.rser.2018.02.003
  5. Zhao, Y., Xue, Z., Wang, X., Li, W., Aiqin, W. (2012). Adsorption of Congo Red onto Lognocellulose/Montmorillonite Nanocomposite. Journal of Wuhan University of Technology-Mater. Sci. Ed., 27(5), 931–938. DOI: 10.1007/s11595-012-0576-2
  6. Gao, J.-j., Qin, Y.-b., Zhou, T., Cao, D.-d., Xu, P., Hochstetter, D., Yue-fei, W., (2013). Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies. Journal of Zhejiang University SCIENCE B, 14(7), 650–658. DOI: 10.1631/jzus.B12a0225
  7. Al-Qodah, Z. (2000). Adsorption of dyes using shale oil ash. Water Research, 34(17), 4295-4303. DOI: 10.1016/S0043-1354(00)00196-2
  8. Nigam, P., Armour, G., Banat, I.M., Singh, D., Marchant, R. (2000). Physical removal of textile dyes from effluents and solid-sate fermentation of dye-adsorbed agriculturalresidues. Bioresource Technology, 72, 219-226. DOI: 10.1016/S0960-8524(99)00123-6
  9. Gupta, G.S., Prasad, G., Panday, K.K., Singh, V.N. (1988). Removal of chrome dye from aqueous solution by fly ash. Water, Air, and Soil Pollution, 37, 13–24. DOI: 10.1007/BF00226476
  10. Sun, Q., Yang, L. (2003). The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Research, 37, 1535-1544. DOI: 10.1016/S0043-1354(02)00520-1
  11. Pavan, F.A., Mazzocato, A.C., Gushikem, Y. (2008). Removal of methylene blue dye from aqueous solution by adsorption using yellow passion fruit peel as adsorbent. Bioresource Technology, 99, 3162-3165. DOI: 10.1016/j.biortech.2007.05.067
  12. Giri, A.K., Patel, R., Mandal, S. (2012). Removal of Cr(VI) from aqueous solution by Eichhornia crassipes root biomass-derived activated carbon. Chemical Engineering Journal, 185-186, 71-81. DOI: 10.1016/j.cej.2012.01.025
  13. Acemioglu, B., Almay, M.H. (2001). Equilibrium Studies on Adsorption of Cu(II) from Aqueous Solution onto Cellulose. Journal of Colloid and Interface Science, 243, 81-84. DOI: 10.1006/jcis.2001.7873
  14. Hasan, V., Mukti, A.T., Putranto, T.W. (2019). Range expansion of the invasive nile tilapia oreochromisniloticus (perciformes: cichlidae) in Java Sea and first record for Kangean Island, Madura, East Java, Indonesia. Ecology, Environment and Conservation, 25, 187-189
  15. Kusumawardani, R., Nurhadi, M., Wirawan, T., Prasetyo, A., Agusti, N.N., Lai, S.Y., Hadi, N., (2022). Kinetic Study of Styrene Oxidation over Titania Catalyst Supported on Sulfonated Fish Bone-derived Carbon. Bulletin of Chemical Reaction Engineering & Catalysis, 17(1), 194-204. DOI: 10.9767/bcrec.17.1.13133.194-204
  16. Szpak, P. (2011). Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. Journal of Archaeological Science, 38(12), 3358-3372. DOI: 10.1016/j.jas.2011.07.022
  17. Cahyanto, A., Kosasih, E., Aripin, D., Hasratiningsih, Z. (2017). Fabrication of hydroxyapatite from fish bones waste using reflux method. IOP Conference Series: Materials Science and Engineering, 172, 012006. DOI: 10.1088/1757-899X/172/1/012006
  18. Lairah, V.P.J., Wuntu, A.D., Aritonang, H.F. (2021). Synthesis of Ag3PO4/HAp from Red Snapper Bone (Lutjanus spp.) For Photodegradation of Methylene Blue. IOP Conference Series: Materials Science and Engineering, 1115, 012082. DOI: 10.1088/1757-899X/1115/1/012082
  19. Andriyan, M.W., Alfatinnisa, Z., Patmala, D., Amalia, F.M., Shinta, A., Subagio, A. (2022). Effectiveness Study of Using HAp Milkfish Bone to Synthesize Ag3PO4 with Ion-Exchange Method for Methylene Blue Degradation. Key Engineering Materials, 920, 14-21. DOI: 10.4028/p-ksfb64
  20. Tan, Y.H., Abdullah, M.O., Kansedo, J., Mubarak, N.M., Chan, Y.S., Nolasco-Hipolito, C. (2019). Biodiesel production from used cooking oil using green solid catalyst derived from calcined fusion waste chicken and fish bones. Renewable Energy, 139, 696-706. DOI: 10.1016/j.renene.2019.02.110
  21. Chinglenthoiba, C., Das, A., Vandana, S. (2020). Enhanced biodiesel production from waste cooking palm oil, with NaOH-loaded Calcined fish bones as the catalyst. Environmental Science and Pollution Research, 27, 15925-15930. DOI: 10.1007/s11356-020-08249-7
  22. Wang, W., Liu, Y.-y., Chen, X.-f., Song, S.-x. (2018). Facile Synthesis of NaOH-modified Fishbone Charcoal (FBC) with Remarkable Adsorption towards Methylene Blue. Procedia Engineering, 211, 495-505. DOI: 10.1016/j.proeng.2017.12.041
  23. Wang, Y., Peng, Q., Akhtar, N., Chen, X., Huang, Y. (2020). Microporous carbon material from fish waste for removal of methylene blue from wastewater. Water Science and Technology, 81(6), 1180-1190. DOI: 10.2166/wst.2020.211
  24. Parvin, S., Hussain, M.M., Akter, F., Biswas, B. K. (2021). Removal of Congo Red by Silver Carp (Hypophthalmichthys molitrix) Fish Bone Powder: Kinetics, Equilibrium, and Thermodynamic Study. Journal of Chemistry, 2021, 1-11. DOI: 10.1155/2021/9535644
  25. Nurhadi, M., Kusumawardani, R., Wirawan, T., Sumari, S., Lai, S.Y., Nur, H. (2021). Catalytic Performance of TiO2–Carbon Mesoporous_Derived from Fish Bones in Styrene Oxidation with Aqueous Hydrogen Peroxide as an Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 16(1), 88-96. DOI: 10.9767/bcrec.16.1.9729.88-96
  26. Widiyowati, I.I., Nurhadi, M., Hatami, M., Yuan, L.S. (2020). Effective TiO2-Sulfonated Carbon-derived from Eichhornia crassipes in The Removal of Methylene Blue and Congo Red Dyes from Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 15(2), 476-489. DOI: 10.9767/bcrec.15.2.6997.476-489
  27. Kusumawardani, R., Nurhadi, M., Wirhanuddin, Gunawan, R., Nur, H. (2019). Carbon-containing Hydroxyapatite Obtained from Fish Bone as Low-cost Mesoporous Material for Methylene Blue Adsorption. Bulletin of Chemical Reaction Engineering & Catalysis, 14(3), 660-671. DOI: 10.9767/bcrec.14.3.5365.660-671
  28. Wanyonyi, W.C., Onyari, J.M., Shiundu, P.M. (2014). Adsorption of Congo Red Dye from Aqueous Solution Using Roots of Eichhornia Crassipes: Kinetic and Equilibrium Studies Energy Procedia, 50, 862-869. DOI: 10.1016/j.egypro.2014.06.105
  29. Nurhadi, M., Widiyowati, I.I., Wirhanuddin, Chandren, S. (2019). Kinetic of Adsorption Process of Sulfonated Carbon-derived from Eichhornia crassipes in the Adsorption of Methylene Blue Dye from Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 14(1), 17-27. DOI: 10.9767/bcrec.14.1.2548.17-27
  30. Pathania, D., Sharma, A., Siddiqi, Z.M. (2016). Removal of congo red dye from aqueous system using Phoenix dactylifera seeds. Journal of Molecular Liquids, 219, 359-367. DOI: 10.1016/j.molliq.2016.03.020
  31. Chakraborty, R., Roy Chowdhury, D. (2013). Fish bone derived natural hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch oleic acid esterification. Chemical Engineering Journal, 215–216, 491–499. DOI: 10.1016/j.cej.2012.11.064
  32. Patel, S., Han, J., Qiu, W., Gao, W. (2015). Synthesis and characterisation of mesoporous bone char obtained by pyrolysis of animal bones, for environmental application. Journal of Environmental Chemical Engineering, 3, 2368-2377. DOI: 10.1016/j.jece.2015.07.031
  33. Yin, T., Park, J.W., Xiong, S. (2015). Physicochemical properties of nano fish bone prepared by wet media milling. LWT - Food Science and Technology, 64(1), 367-373. DOI: 10.1016/j.lwt.2015.06.007
  34. Zayed, E.M., Sokker, H.H., Albishri, H.M., Farag, A.M. (2013). Potential use of novel modified fishbone for anchoring hazardous metal ions from their solutions. Ecological Engineering, 61, 390–393. DOI: 10.1016/j.ecoleng.2013.09.010
  35. Boutinguiza, M., Poua, J., Comesaña, R., Lusquiños, F., Carlos, A.d., Leóna, B. (2012). Biological hydroxyapatite obtained from fish bones. Materials Science and Engineering: C, 32(3), 478-486. DOI: 10.1016/j.msec.2011.11.021
  36. Jaber, H.L., Hammood, A.S., Parvin, N. (2017). Synthesis and characterization of hydroxyapatite powder from natural Camelus bone. Journal of the Australian Ceramic Society, 54(1), 1-10. DOI: 10.1007/s41779-017-0120-0
  37. Hummadi, K.K., Luo, S., He, S. (2022). Adsorption of methylene blue dye from the aqueous solution via bio-adsorption in the inverse fluidized-bed adsorption column using the torrefied rice husk Chemosphere, 287(1), 131907. DOI: 10.1016/j.chemosphere.2021.131907
  38. Hofmann, U., Kottenhahn, H., Morcos, S. (1966). Morcos, Adsorption of Methylene Blue on Clays. Angewandte Chemie International Edition, 5(2), 247-248. DOI: 10.1002/anie.196602473
  39. Yao, Y., Xu, F., Chen, M., Xu, Z., Zhu, Z. (2010). Adsorption behavior of methylene blue on carbon nanotubes. Bioresource Technology, 101(9), 3040-3046. DOI: 10.1016/j.biortech.2009.12.042
  40. Lestari, S., Muflihah, M., Kusumawardani, R., Nurhadi, M., Mangesa, Y., Ridho, F.I., Adawiyah, R., Ambarwati, P., Rahma, S., Sin Yuan Lai, S.Y., Nur, H. (2022). Activated Bledug Kuwu’s Clay as Adsorbent Potential for Synthetic Dye Adsorption: Kinetic and Thermodynamic Studies. Bulletin of Chemical Reaction Engineering and Catalysis, 17(1), 22-31. DOI: 10.9767/bcrec.17.1.12473.22-31
  41. Fadillah, G., Saleh, T.A., Wahyuningsih, S., Putri, E.N.K., Febrianastuti, S. (2019). Electrochemical removal of methylene blue using alginate-modified graphene adsorbents. Chemical Engineering Journal, 378, 122140. DOI: 10.1016/j.cej.2019.122140
  42. Fan, L., Luo, C., Sun, M., Li, X., Lu, F., Qiu, H. (2012). Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue. Bioresource Technology, 114, 703-706. DOI: 10.1016/j.biortech.2012.02.067
  43. Hameed, B.H., Din, A.T.M., Ahmad, A.L. (2007). Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials, 141(3), 819-825. DOI: 10.1016/j.jhazmat.2006.07.049
  44. Hu, X.-S., Lianga, R., Sun, G. (2018). Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution. Journal of Materials Chemistry A, 6, 17612-17624. DOI: 10.1039/C8TA04722G
  45. Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40, 997-1026. DOI: 10.1016/j.procbio.2004.04.008
  46. Lim, H.K., Teng, T.T., Ibrahim, M.H., Ahmad, A., Chee, H.T. (2012). Adsorption and Removal of Zinc (II) from Aqueous Solution Using Powdered Fish Bones. APCBEE Procedia, 1, 96-102. DOI: 10.1016/j.apcbee.2012.03.017
  47. Mohanty, K., Jha, M., Meikap, B.C., Biswas, M.N. (2006). Biosorption of Cr(VI) from aqueous solutions by Eichhornia crassipes. Chemical Engineering Journal, 117, 71–77. DOI: 10.1016/j.cej.2005.11.018
  48. Mahmoodi, N.M., Khorramfar, S., Najafi, F. (2011). Amine-functionalized silica nanoparticle: Preparation, characterization and anionic dye removal ability. Desalination, 279, 79-87. DOI: 10.1016/j.desal.2011.05.059
  49. Ho, Y.S., McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451-465. DOI: 10.1016/S0032-9592(98)00112-5
  50. Ho, Y.S., McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70, 115-124. DOI: 10.1016/S0923-0467(98)00076-1
  51. Khaniabadi, Y.O., Basiri, H., Nourmoradi, H., Mohammadi, M.J., Yari, A.R., Sadeghi, S., Amrane, A. (2017). Adsorption of Congo Red Dye From Aqueous Solutions by Montmorillonite as a Low-cost Adsorbent. International Journal of Chemical Reactor Engineering, 16(1), 1-11. DOI: 10.1515/ijcre-2016-0203
  52. Sharma, P.K., Ayub, S., Tripathi, C.N. (2016). Isotherm describing physical adsorption of Cr(VI) from aqueous solution using various agricultural wastes as adsorbent. Cogent Engineering, 3, 1-20. DOI: 10.1080/23311916.2016.1186857
  53. Baccar, R., Blangquez, P., Bouzid, J., Feki, M., Sarra, M. (2010). Equilibrium, thermodynamic and kinetic studies on adsorption of commercial dye by activated carbon derived from olive-waste cakes. Chemical Engineering Journal, 165(2), 457-464. DOI: 10.1016/j.cej.2010.09.033
  54. Wanyonyi, W.C., Onyari, J.M., Shiundu, P.M. (2013). Adsorption of Methylene Blue Dye from Aqueous Solution Using Eichhornia crassipes. Bulletin of Environmental Contamination and Toxicology, 91, 362-366. DOI: 10.1007/s00128-013-1053-0
  55. Yang, L., Zhang, Y., Liu, X., Jiang, X., Zhang, Z., Zhang, T., Zhang, L. (2014). The Investigation of Synergistic and competitive interaction between dye Congo red and Methyl blue on magnetic MnFe2O4. Chemical Engineering Journal, 246, 88-96. DOI: 10.1016/j.cej.2014.02.044

Last update:

No citation recorded.

Last update:

No citation recorded.